ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:549  (1)
  • electron transport  (1)
Collection
Keywords
Language
Years
  • 1
    Publication Date: 2023-11-17
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Detrital single‐grain zircon U–Pb geochronology is a powerful tool for provenance studies if information on the source rocks is available. This paper proposes a new source‐rock classification tool that uses the degree of annealing of radiation damage in detrital zircon; the annealing is expressed by the relationship between the width (full‐width at half‐maximum; FWHM) of the 〈italic toggle="no"〉v〈/italic〉〈sub〉3〈/sub〉[SiO〈sub〉4〈/sub〉] Raman band at ~1008 cm〈sup〉−1〈/sup〉 and the calculated α‐dose. The host rocks of the zircons are classified into three types according to their emplacement process and/or thermal history: volcanic and rapidly cooled plutonic and high‐grade metamorphic rocks (type 1); rocks with hydrothermal zircons (type 2); slowly cooled igneous and metamorphic rocks (type 3). We construct a naive Bayes prediction model by training it with a collection of zircons of known types. The unknown zircons are assigned a probability of derivation from a specific host‐rock type. This classification scheme is best used as an accessory tool in provenance studies that apply detrital zircon U–Pb geochronology.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Zircons are classified into three types based on annealing state revealed by Raman analysis and calculated α‐dose. This classification can be used to distinguish zircon in provenance study.〈boxed-text position="anchor" content-type="graphic" id="gj4751-blkfxd-0001" xml:lang="en"〉 〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:00721050:media:gj4751:gj4751-toc-0001"〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: Natural Science Foundation of Hubei Province http://dx.doi.org/10.13039/501100003819
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Keywords: ddc:549 ; annealing ; Bayesian probability ; provenance analysis ; radiation damage ; zircon classification
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-6881
    Keywords: [2Fe-2S] ferredoxins ; electron transport ; x-ray crystallography ; nuclear magnetic resonance spectroscopy ; fast reaction kinetics ; mutagenesis ; iron-sulfur cluster assembly ; heterologous expression ; stable-isotope labeling ; Anabaena
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The ability to overexpress [2Fe-2S] ferredoxins inEscherichia coli has opened up exciting research opportunities. High-resolution x-ray structures have been determined for the wild-type ferredoxins produced by the vegetative and heterocyst forms ofAnabaena strain 7120 (in their oxidized states), and these have been compared to structural information derived from multidimensional, multinuclear NMR spectroscopy. The electron delocalization in these proteins in their oxidized and reduced states has been studied by1H,2H,13C, and15N NMR spectroscopy. Site-directed mutagenesis has been used to prepare variants of these ferredoxins. Mutants (over 50) of the vegetative ferredoxin have been designed to explore questions about cluster assembly and stabilization and to determine which residues are important for recognition and electron transfer to the redox partnerAnabaena ferredoxin reductase. The results have shown that serine can replace cysteine at each of the four cluster attachment sites and still support cluster assembly. Electron transfer has been demonstrated with three of the four mutants. Although these mutants are less stable than the wild-type ferredoxin, it has been possible to determine the x-ray structure of one (C49S) and to characterize all four by EPR and NMR. Mutagenesis has identified residues 65 and 94 of the vegetative ferredoxin as crucial to interaction with the reductase. Three-dimensional models have been obtained by x-ray diffraction analysis for several additional mutants: T48S, A50V, E94K (four orders of magnitude less active than wild type in functional assays), and A43S/A45S/T48S/A50N (quadruple mutant).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...