ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-04-05
    Description: We report on measurements of concentration and carbon isotope composition (δ13CCO2) of CO2 trapped in fluid inclusions of olivine and clinopyroxene crystals separated from San Bartolo ultramafic cumulate Xenoliths (SBX) formed at mantle depth (i.e., beneath a shallow Moho supposed to be at 14.8 km). These cumulates, erupted about 2 ka ago at Stromboli volcano (Italy), have been already investigated by Martelli et al. (2014) mainly for Sr-Nd isotopes and for their noble gases geochemistry. The concentration of CO2 varies of one order of magnitude from 3.8·10−8 mol g−1 to 4.8·10−7 mol g−1, with δ13C values between −2.8‰ and −1.5‰ vs V-PDB. These values overlap the range of measurements performed in the crater gases emitted at Stromboli (−2.5‰ b δ13CCO2 b −1.0‰). Since SBX formed from relatively primitive mantle-derived basic magmas, we argue that the isotope composition displayed by fluid inclusions and surface gases can be considered representative of the magma volatile imprinting released by partial melting of the mantle source beneath Stromboli (−2.8‰ b δ13C b−1.0‰). In addition, the δ13C signature of CO2 is not significantly modified by fractionation due to magmatic degassing or intracrustal contamination processes owing tomagma ascent and residence within the volcano plumbing system. Such δ13C values are higher than those commonly reported for MORB-like upper mantle (−8÷−4‰) and likely reflect the source contamination of the localmantlewedge by CO2 coming from the decarbonation of the sediments carried by the subducting Ionian slabwith a contribution of organic carbon up to 7%.
    Description: Published
    Description: 95-103
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Keywords: Stromboli volcano ; CO2 ; Ultramafic cumulates ; d13C ; Fluid inclusions ; mantle ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-23
    Description: In spite of its major role on the atmospheric volatile budget, climate, and tracking magmatic transfers, mantle (CO2) degassing below volcanoes is still poorly understood. Most of the studies on this scientific topic lack constraint on the CO2 concentration of primary melts, the depth at which it starts degassing, and the extent of this process in the mantle. In this study of Piton de la Fournaise (PdF) volcano, we couple geochemistry of low solubility gases (He, Ar, CO2, d13C) in fluid inclusions (FIs) and petro-chemistry of magmatic inclusions on a set of olivine and clinopyroxene crystals from basalts and ultramafic enclaves. We constrain basaltic melt degassing at PdF over a large pressure range (from 4 GPa up to the surface). Based on CO2-He-Ar systematics, we infer that extensive degassing occurs already in the upper mantle (4–1 GPa) and it is favored by multiple steps of magma ponding and differentiation up to the mantle-crust underplating depth (0.4 GPa). Thus, we calculate that basaltic melts injected at crustal depth (〈0.4 GPa) have already exsolved 94 ± 5 wt% of their primary CO2 content in accordance with (1) the evolved and degassed signature of erupted lavas and (2) the weakness of inter-eruptive gas emissions in the active area bearing low-temperature vapor-dominated fumaroles. Our results at PdF strongly contrast with previous findings on other ocean island volcanoes having a higher magma production rate and faster magma ascent, like Kilauea (Hawaii), whose basalts experience only limited extent of differentiation and degassing. We propose that extensive degassing already in the upper mantle can be a common process for many volcanoes of the Earth and is tightly dependent on the dynamics of magma ascent and differentiation across multiple ponding zones. Based on the modeling developed in this study, we propose a new estimation of the CO2 content (up to 3.5 ± 1.4 wt%) in primary basaltic melts at PdF leading to a carbon content in the mantle source of 716 ± 525 ppm. This new estimation is considerably higher than the few previous calculations performed for Ocean Island Basalts (OIB) systems. Another implication of this work involves the possible bias between the d13C measured in volcanic gas emissions (〈-6‰) and that of primary vapour phase (-0.5 ± 0.5‰) constrained in this work. This bias would confirm the early step of extensive CO2 degassing within the upper mantle and could represent an alternative for the hypotheses of carbon recycling or mantle heterogeneity in support of the low d13C signature of some mantle reservoirs. This study bears significant implications on the global budget of volcanic volatile emissions, chiefly regarding the contribution of past and future emissions of volcanic CO2 to climate dynamics, and on volcanic gas monitoring.
    Description: Published
    Description: 376-401
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Fluid inclusions ; Mantle ; d13C ; CO2 ; Noble gases ; Degassing ; Underplating layer
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...