ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Polymer International 41 (1996), S. 419-425 
    ISSN: 0959-8103
    Keywords: polyurethane ; cell growth ; phase separation ; hydrogen bonding index ; cytotoxicity ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Polyurethanes (PU) with suitable soft segments have been found to be good blood-compatible polymers and have attracted much attention recently. In this study, various molar amounts of 4,4′-methylene bisphenyl isocyanate reacted with poly(tetramethylene oxide) were synthesized to explore the optimal ratio of hard/soft segments for cell attachment and proliferation in in vitro systems. Differential scanning calorimetry and dynamic mechanical analysis were used to determine the physical properties, hydrogen bonding index (HBI) and transmission electron microscopy to observe the phase-separation phenomena in the materials, and 3T3 fibroblast to evaluate the dependence of the cell proliferation at 37°C on the material properties. Our results show that cell attachment and proliferation are closely related to the cell growth surface, which in turn is controlled by (1) the ratio of hard to total segment concentration and (2) the recrystallization temperature (Tc) of PU. To obtain a good cell growth surface, the ratio of hard to total segment concentration is found to be between 0.4 and 0.6, and HBI is between 1.5 and 2.1. Furthermore, when the Tc of PU is near the physiology temperature, a stable surface for cell growth can be provided. The shorter molecules in the soft segment region can rearrange the molecular chain at 37°C.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...