ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pharmaceutical research 15 (1998), S. 449-454 
    ISSN: 1573-904X
    Keywords: serum albumin ; species difference ; thermal denaturation ; chemical denaturation ; conformational stability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. The chemical and thermal stability of five species of mammalian serum albumins (human, bovine, dog, rabbit, and rat) were investigated, and conformational stabilities were compared to obtain structural information about the different albumins. Methods. The chemical stability was estimated by using guanidine hydrochloride (GdnCl), and monitored by fluorometry and circular dichroism (CD). Thermal stability was evaluated by differential scanning calorimetry (DSC). Results. In human, bovine, and rat albumin, two transitions were observed when GdnCl-induced denaturation was monitored fluorometrically, indicating at least one stable intermediate, although, in dog and rabbit albumin, only one transition was observed. However, GdnCl denaturation, as monitored by the ellipticity, showed a two-state transition in all species used in this study. Since these proteins, showing two transitions, contained a conserved tryptophan residue within domain II, these structural changes might have occurred in domain II during intermediate formation. DSC measurements showed that human, bovine, and rat albumin exhibited single sharp endotherms and these were clearly consistent with a two-state transition, while the deconvolution analysis of broad thermograms observed for dog and rabbit albumin showed that the absorption peaks could be approximated by a two-component composition, and were consistent with independent transitions of two different cooperative blocks. Conclusions. These experimental results demonstrate that species differences exist with respect to the conformational stability and the mechanism of the unfolding pathway for mammalian albumin.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-904X
    Keywords: serum albumin ; species difference ; N-B transition ; protein binding ; conformational stability ; chemical modification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. The aim of this study was to investigate the characteristics of the structural transitions and changes in ligand binding properties of different albumins during the pH-dependent structural transition, often referred to as the N-B transition. Methods. Structural transitions were evaluated by means of spectrometry, differential scanning calorimetry and chemical modification. In addition, ligand binding properties were investigated using typical site-specific bound drugs (warfarin, phenylbutazone, ibuprofen and diazepam). Results. Conformational changes, including N-B transition, clearly occurred in albumins from all species used in this study. The conformational stabilities of all the albumins were clearly lost in the weakly alkaline pH range. This was probably the result of the destruction of salt bridges between domain I and domain III in the albumin molecule. In addition, the profiles of the ANS-induced fluorescence were different and could be classified into two patterns, suggesting that hydrophobic pockets in the albumin molecules were different for the different species. The data suggest that the amino acid residues responsible for the transitions were some of the His residues located in domain I. Further, the ligand binding properties of the albumins were slightly different but statistically significant. Conclusions. The overall mechanisms of the N-B transition may be similar for all the albumins, but its impact is considerably different among the species in terms of both structural characteristics and ligand binding properties. Furthermore, the transitions appear to be multi-step transitions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...