ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-10
    Description: We describe numerical simulations designed to help elucidate the role of ocean salinity in climate. Using a general circulation model, we study a 100-year sensitivity experiment in which the global-mean salinity is doubled from its present observed value, by adding 35 psu everywhere. The salinity increase produces a rapid global-mean sea-surface warming of 0.8◦ within a few years, caused by reduced vertical mixing associated with changes in cabbeling. The warming is followed by a gradual global mean sea-surface cooling of 0.4 ◦C over the next few decades, caused by an increase in the vertical (downward) component of the isopycnal diffusive heat flux. We find no evidence of impacts on the variability of either the Atlantic thermohaline circulation or the El Ni ̃no/Southern Oscillation. The mean strength of the Atlantic meridional overturning is slightly reduced and the North Atlantic Deep Water penetrates less deeply. Nevertheless, our results dispute claims that higher salinities for the world ocean have profound consequences for the thermohaline circulation. In additional experiments with doubled atmospheric carbon dioxide, we find that the amplitude and spatial pattern of the global warming signal are modified in the hypersaline ocean. In particular, the ocean’s contribution to the climate sensitivity is significantly reduced. We infer the existence of a non-linear interaction between the climate responses to modified carbon dioxide and modified salinity.
    Description: Published
    Description: 108-123
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: JCR Journal
    Description: reserved
    Keywords: ocean ; salinity ; climate ; thermohaline circulation ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-03
    Description: The development of the INGV (Istituto Nazionale di Geofisica e Vulcanologia)-CMCC (Centro Euro-Mediterraneo per i Cambiamenti Climatici) Seasonal Prediction System (SPS) is documented. In this SPS the ocean initial conditions estimation includes a Reduced Order Optimal Interpolation procedure for the assimilation of temperature and salinity profiles at the global scale. Nine member ensemble forecasts have been produced for the period 1991-2003 for two starting dates per year in order to assess the impact of the subsurface assimilation in the ocean for initialization. Comparing the results with control simulations (i.e.: without assimilation of subsurface profiles during ocean initialization), we showed that the improved ocean initialization increases the skill in the prediction of tropical Pacific SSTs in our system for boreal winter forecasts. Considering the forecast of the El Ni˜no 1997-1998, the data assimilation in the ocean initial conditions leads to a considerable improvement in the representation of its onset and development. Our results indicate a better prediction of global scale surface climate anomalies for the forecasts started in November, probably due to the improvement in the tropical Pacific. For boreal winter, in both tropics and extra tropics, we show significant increases in the capability of the system to discriminate above normal and below normal temperature anomalies.
    Description: Published
    Description: 2930-2952
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: ocean modelling ; global climate models ; seasonal forecast ; coupled models ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The effect of horizontal resolution on tropical variability is investigated within the modified SINTEX model, SINTEX-F, developed jointly at INGV, IPSL and at the Frontier Research System. The horizontal resolutions T30 and T106 are investigated in terms of the coupling characteristics, frequency and variability of the tropical ocean-atmosphere interactions. It appears that the T106 resolution is generally beneficial even if it does not eliminate all the major systematic errors of the coupled model. There is an excessive shift west of the cold tongue and ENSO variability, and high resolution has also a somewhat negative impact to the variability in the East Indian Ocean. A dominant two-year peak for the NINO3 variabilty in the T30 model is moderated in the T106 as it shifts to longer time scale. At high resolution new processes come into play, as the coupling of tropical instability waves, the resolution of coastal flows at the Pacific Mexican coasts and improved coastal forcing along the coast of South America. The delayed oscillator seems the main mechanism that generates the interannual variability in both models, but the models realize it in different ways. In the T30 model it is confined close to the equator, involving relatively fast equatorial and near-equatorial modes, in the high resolution, it involves a wider latitudinal region and slower waves. It is speculated that the extent of the region that is involved in the interannual variability may be linked to the time scale of the variability itself.
    Description: This research was partially supported by the Italy–USA Cooperation Program of the Italian Ministry of Environment and by the EU projects ENSEMBLES and DYNAMITE.
    Description: Published
    Description: 730-750
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: coupled models ; tropical variability ; ENSO system ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: This study investigates the possible changes that the greenhouse global warming might generate in the characteristics of the tropical cyclones (TCs). The analysis has been performed using scenario climate simulations carried out with a fully coupled high-resolution global general circulation model. The capability of the model to reproduce a reasonably realistic TC climatology has been assessed by comparing the model results from a simulation of the 20th Century with observations. The model appears to be able to simulate tropical cyclone-like vortices with many features similar to the observed TCs. The simulated TC activity exhibits realistic geographical distribution, seasonal modulation and interannual variability, suggesting that the model is able to reproduce the major basic mechanisms that link the TC occurrence with the large scale circulation. The results from the climate scenarios reveal a substantial general reduction of the TC frequency when the atmospheric CO2 concentration is doubled and quadrupled. The reduction appears particularly evident for the tropical North West Pacific (NWP) and North Atlantic (ATL). In the NWP the weaker TC activity seems to be associated with a reduced amount of convective instabilities. In the ATL region the weaker TC activity seems to be due to both the increased stability of the atmosphere and a stronger vertical wind shear. Despite the generally reduced TC activity, there is evidence of increased rainfall associated with the simulated cyclones. Despite the overall warming of the tropical upper ocean and the expansion of warm SSTs to the subtropics and mid-latitudes, the action of the TCs remains well confined to the tropical region and the peak of TC number remains equatorward of 20° latitude in both Hemispheres. An extended version of this work is in available on Journal of Climate (Gualdi et al.,2008 - DOI:10.1175/2008JCLI1921.1)
    Description: Published
    Description: 287-321
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: climate ; tropical cyclones ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-25
    Description: A Land Surface Model (LSM) has been included in the ECHAM4 Atmospheric General Circulation Model (AGCM). The LSM is an early version of ORCHIDEE (Organizing Carbon and Hydrology In Dynamic EcosystEms) and it replaces the simple land surface scheme previously included in ECHAM4. The purpose of this paper is to document how a more exhaustive consideration of the land-surface-vegetation processes affects the simulated boreal summer surface climate. In order to investigate the impacts on the simulated climate, different sets of AMIP-type simulations have been performed with Echam4 alone and with the AGCM coupled with ORCHIDEE. Furthermore, to assess the effects of the increase in horizontal resolution the coupling of Echam4 with the LSM has been implemented at different horizontal resolutions. The analysis reveals that the LSM has large effects on the simulated boreal summer surface climate of the atmospheric model. Considerable impacts are found in the surface energy balance due to changes in the surface latent heat fluxes over tropical and mid-latitude areas covered with vegetation. Rainfall and atmospheric circulation are substantially affected by these changes. In particular, increased precipitation is found over evergreen and summergreen vegetated areas. Due to the socio-economical relevance, particular attention has been devoted to the Indian Summer Monsoon (ISM) region. Our results indicate that precipitation over the Indian subcontinent is better simulated with the coupled Echam4-ORCHIDEE model compared to the atmospheric model alone.
    Description: Submitted
    Description: 255-278
    Description: JCR Journal
    Description: open
    Keywords: Land-Surface-Vegetation ; climate ; GCM ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-11-04
    Description: A new coupled GCM (SINTEX) has been developed. The model is formed by the atmosphere model ECHAM-4 and the ocean model ORCA. The atmospheric and oceanic components are coupled through OASIS. The domain is global and no flux correction is applied. In this study, we describe the ability of the coupled model to simulate the main features of the observed climate and its dominant modes of variability in the tropical Indo-Pacific. Three long experiments have been performed with different horizontal resolution of the atmospheric component in order to assess a possible impact of the atmosphere model resolution onto the simulated climate. Overall, the mean state is captured reasonably well, though the simulated SST tends to be too warm in the tropical Eastern Pacific and there is a model tendency to produce a double ITCZ. The model gives also a realistic representation of the temperature structure at the equator in the Pacific and Indian Ocean. The slope and the structure of the equatorial thermocline are well reproduced. Compared to the observations, the simulated annual cycle appears to be underestimated in the eastern equatorial Pacific, whereas a too pronounced seasonal variation is found in the Central Pacific. The main basic features of the interannual variability in the tropical Indo-Pacific region are reasonably well reproduced by the model. In the Indian Ocean, the characteristics of the simulated interannual variability are very similar to the results found from the observations. In the Pacific, the modelled ENSO variability appears to be slightly weaker and the simulated period a bit shorter than in the observations. Our results suggest that, both the simulated mean state and interannual variability are generally improved when the horizontal resolution of the atmospheric mode component is increased.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: coupled models ; climate variability ; tropics ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 4870636 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...