ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 105 (1988), S. 195-204 
    ISSN: 1573-5036
    Keywords: barley ; cadmium ; chelation ; complexation ; humic acid ; plant uptake ; solution culture ; toxicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract An ‘alternating solution’ culture method was used to study the effects of chloride ions and humic acid (HA) on the uptake of cadmium by barley plants. The plants were transferred periodically between a nutrient solution and a test solution containing one of four levels of HA (0, 190, 569 or 1710 μg cm−3) and one of five levels of Cd (0, 0.5, 1.0, 2.5 or 5.0 μg cm−3) in either a 0.006M NaNO3 or 0.006M NaCl medium. Harvest and analysis of shoots and roots was after nineteen days. The distribution of Cd in the test solutions between Cd2+, CdCl+ and HA-Cd was determined in a separate experiment by dialysis equilibrium. In the nitrate test solutions Cd uptake was clearly controlled by Cd2+ concentration and was therefore reduced by HA complex formation. In the absence of HA, chloride suppressed Cd uptake indicating that Cd2+ was the preferred species. However complex formation with Cl− enhanced uptake when HA was present because of an increase in the concentration of inorganic Cd species relative to the nitrate system. The ratio root-Cd/shoot-Cd remained at about 10 across a wide range of shoot-Cd concentrations, from about 3 μg g−1 (sub-toxic) up to 85 μg g−1 (80% yield reduction). The ability of the barley plants to accumulate ‘non-toxic’ Cd in their roots was thus very limited. Humic acid also had no effect on Cd translocation within the plant and the root/shoot weight ratio did not vary with any treatment. At shoot-Cd concentrations in excess of 50 μg g−1, K, Ca, Cu and Zn uptake was reduced, probably the result of root damage rather than a specific ion antagonism. The highest concentration of HA also lowered Fe and Zn uptake and there was a toxic effect with increasing HA concentration at Cd=0. However the lowest HA level, comparable with concentrations found in mineral soil solutions, only reduced yield (in the absence of Cd) by 〈5% while lowering Cd uptake across the range of Cd concentrations by 66%–25%.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...