ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • blood flow  (1)
  • combined electric and magnetic fields  (1)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 13 (1992), S. 43-60 
    ISSN: 0197-8462
    Keywords: scaled frequency FDTD method ; induced current densities ; pure electric or magnetic fields ; combined electric and magnetic fields ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: We have used the finite-difference time-domain (FDTD) method to calculate induced current densities in a 1.31-cm (nominal 1/2 in) resolution anatomically based model of the human body for exposure to purely electric, purely magnetic, and combined electric and magnetic fields at 60 Hz. This model based on anatomic sectional diagrams consists of 45,024 cubic cells of dimension 1.31 cm for which the volume-averaged tissue properties are prescribed. It is recognized that the conductivities of several tissues (skeletal muscle, bone, etc.) are highly anisotropic for power-line frequencies. This has, however, been neglected in the first instance and will be included in future calculations. Because of the quasi-static nature of coupling at the power-line frequencies, a higher quasi-static frequency f′ may be used for irradiation of the model, and the internal fields E′ thus calculated can be scaled back to the frequency of interest, e.g., 60 Hz. Since in the FDTD method one needs to calculate in the time domain until convergence is obtained (typically 3-4 time periods), this frequency scaling to 5-10 MHz for f′ reduces the needed number of iterations by over 5 orders of magnitude. The data calculated for the induced current and its variation as a function of height are in excellent agreement with the data published in the literature. The average current densities calculated for the various sections of the body for the magnetic field component (H) are considerably smaller (by a factor of 20-50) than those due to the vertically polarized electric field component when the ratio E/H is 377 ohms. We have also used the previously described impedance method to calculate the induced current densities for the anatomically based model of the human body for the various orientations of the time-varying magnetic fields, namely from side to side, front to back, or from top to bottom of the model, respectively. 1992 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 8 (1987), S. 385-396 
    ISSN: 0197-8462
    Keywords: SAR ; blood flow ; temperature ; frequency ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Anatomic variability in the deposition of radiofrequency electromagnetic energy in mammals has been well documented. A recent study [D'Andrea et al., 1985] reported specific absorption rate (SAR) hotspots in the brain, rectum and tail of rat carcasses exposed to 360- and to 2,450-MHz microwave radiation. Regions of intense energy absorption are generally thought to be of little consequence when predicting thermal effects of microwave irradiation because it is presumed that heat transfer via the circulatory system promptly redistributes localized heat to equilibrate tissue temperature within the body. Experiments on anesthetized, male Long-Evans rats (200-260 g) irradiated for 10 or 16 min with 2,450, 700, or 360 MHz radiation at SARs of 2 W/kg, 6 W/kg, or 10 W/ kg indicated that postirradiation localized temperatures in regions previously shown to exhibit high SARs were appreciably above temperatures at body sites with lower SARs. The postirradiation temperatures in the rectum and tail were significantly higher in rats irradiated at 360 MHz and higher in the tail at 2,450 MHz than temperatures resulting from exposure to 700 MHz. This effect was found for whole-body-averaged SARs as low as 6 W/kg at 360 MHz and 10 W/kg at 2,450 MHz. In contrast, brain temperatures in the anesthetized rats were not different from those measured in the rest of the body following microwave exposure.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...