ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0959-8103
    Keywords: blend ; molecular dynamics ; dielectric investigation ; DSC measurements ; glass relaxation process ; local process ; molecular weight ; compatibility ; polystyrene ; tetramethyl polycarbonate ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Dielectric and calorimetric measurements have been carried out for tetramethyl polycarbonate/polystyrene (TMPC/PS) blends with different compositions. The effect of varying the molecular weight of the weakly polar component (PS) on the molecular dynamics of the polar segments of TMPC has been thoroughly studied over wide ranges of frequency (10-2-105 Hz), temperature (50-220°C) and number average molecular weight, M̄n, (6500-560 000 g mol-1). All blends were found to be compatible regardless of the composition ratio and the molecular weight of PS. Some new and interesting experimental findings have been observed concerning the effect of molecular weight on the glass temperature and on the broadness of the glass transition and relaxation. Neither the kinetics nor the distribution of relaxation times of the local process observed in pure TMPC was affected by blending with PS, regardless of the composition ratio or the molecular weight of PS. It has been concluded that the mixing of the polymeric components to form a homogeneous single phase (compatible blend) does not take place on a segmental level but on a structural one. The size of this structural level has been suggested to have the same volume as the cooperative dipoles, which is assumed to be the minimum volume responsible for a uniform glass transition (10-15 nm). The molecular weight dependence of the relaxation characteristics of the glass process and temperature could be attributed to the variation in the size and packing of the structural units.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...