ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • mineralogy  (4)
  • paleolimnology  (2)
  • bison  (1)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of paleolimnology 12 (1994), S. 269-282 
    ISSN: 1573-0417
    Keywords: Great Plains ; western Canada ; magnesian calcite ; Holocene ; paleolimnology ; stable isotopes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract Lake Manitoba, the largest lake in the Prairie region of North America, contains a fine-grained sequence of late Pleistocene and Holocene sediment that documents a complex postglacial history. This record indicates that differential isostatic rebound and changing climate have interacted with varying drainage basin size and hydrologic budget to create significant variations in lake level and limnological conditions. During the initial depositional period in the basin, the Lake Agassiz phase (∼12–9 ka), δ18O of ostracodes ranged from −16‰ to −5‰ (PDB), implying the lake was variously dominated by cold, dilute glacial meltwater and warm to cold, slightly saline water.Candona subtriangulata, which prefers cold, dilute water, dominates the most negative δ18O intervals, when the basin was part of proglacial Lake Agassiz. At times during this early phase, the δ18O of the lake abruptly shifted to higher values; euryhaline taxa such asC. rawsoni orLimnocythere ceriotuberosa, and halobiont taxa such asL. staplini orL. sappaensis are dominant in these intervals. This positive covariance of isotope and ostracode records implies that the lake level episodically fell, isolating the Lake Manitoba basin from the main glacial lake. δ18O values from inorganic endogenic Mg-calcite in the post-Agassiz phase of Lake Manitoba trend from −4‰ at 8 ka to −11‰ at 4.5 ka. We interpret that this trend indicates a gradually increasing influence of isotopically low (−20‰ SMOW) Paleozoic groundwater inflow, although periods of increased evaporation during this time may account for zones of less negative isotopic values. The δ18O of this inorganic calcite abruptly shifts to higher values (−6‰) after ∼4.5 ka due to the combined effects of increased evaporative enrichment in a closed basin lake and the increased contribution of isotopically high surface water inflow on the hydrologic budget. After ∼2 ka, the δ18O of the Mg-calcite fluctuates between −13‰ and −7‰, implying short-term variability in the lake's hydrologic budget, with values indicating the lake varied from outflow-dominated to evaporation-dominated. The δ13C values of Mg-calcite remain nearly constant from 8 to 4.5 ka and then trend to higher values upward in the section. This pattern suggests primary productivity in the lake was initially constant but gradually increased after 4.5 ka.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of paleolimnology 19 (1998), S. 265-284 
    ISSN: 1573-0417
    Keywords: Holocene ; lacustrine ; sedimentation ; Lake Winnipeg ; sediment cores ; geochemistry ; mineralogy ; texture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract Two seismic facies were recognized in the sedimentary sequence overlying acoustic basement in Lake Winnipeg. The upper facies, which overlies a regional unconformity, is termed the Lake Winnipeg Sequence. Based on the seismostratigraphy, lithostratigraphy, and radiocarbon dates of approximately 4000 and 7000 yr BP from material collected directly over the unconformity in the southern and northern parts of the lake, respectively, this facies has been interpreted as representing Holocene sedimentation. Results of compositional and textural analyses of the Holocene sediment (Winnipeg sediment) from thirteen long (〉2 m) cores indicate a transgressional sequence throughout the basin. In the South Basin, the generally fining upward sequence is characterized at the base by silt-sized detrital carbonate minerals, quartz and feldspar which decrease in concentration upward. In this basin, the high carbonate content and V/Al and Zn/Al ratios are indicative of a Paleozoic and Cretaceous provenance for sediment derived from glacial deposits through shoreline erosion and fluvial transport, via the Red River. Sedimentation in the central part of the lake and the North Basin is attributed to shoreline erosion of sand and gravel beaches. Consequently, the texture of these sediments is generally coarser than in the South Basin, and the composition primarily reflects a Paleozoic and Precambrian provenance. The basin-wide decrease in Ca, total carbonate minerals, dolomite and calcite concentrations upward in the cores is reflected by a decrease in the detrital carbonate component in all but the most northern cores. Other basin-wide trends show an upward increase in organic content in all cores. An increase in grain size near the top of most cores suggests a major, basin-wide change in sedimentation within the last, approximately 900 years in the South Basin.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-0417
    Keywords: late-Holocene ; water chemistry ; bison ; aspen ; fire regime ; pollen ; mineralogy ; granulometry ; hydrology ; Great Plains
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract This paper reports on a high-resolution, multi-proxy, late-Holocene study from a lake in the Aspen Parkland of southern Alberta, Canada. A sediment core spanning the last 4000+ yrs from Pine Lake was analyzed for charcoal, granulometry, grain roundness, tephra content, geochemistry, mineralogy and pollen. This multi-proxy record indicates: (1) increasing anoxia causing a shift in S deposition from gypsum to pyrite due to increasing moisture availability in the late Holocene; (2) a decrease in Mg flux into the lake due to the development of the aspen forest, which reduced water flow through the Mg-rich shallow sand aquifer; the aspen forest expansion was in turn induced by the extirpation of plains bison prior to settlement; and (3) a change in the upland fire regime from frequent low-biomass grass fires to less frequent but higher biomass under-story fires, also as a result of the expansion of the aspen forest. Not only are the different proxies sensitive to different rates and magnitudes of change, they also show different sensitivities to different types of hydrological change: the mineralogy and geochemistry are sensitive to changes in water level and redox potential, and to changes in the relative strengths of the aquifers feeding the lake, while the granulometry is sensitive to total hydrological balance. Thus, apparently contradictory proxy results should be viewed as complementary.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of paleolimnology 10 (1994), S. 199-212 
    ISSN: 1573-0417
    Keywords: saline lake ; geochemistry ; mineralogy ; lithostratigraphy ; paleolimnology ; Great Plains ; evaporites
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract Little Manitou Lake is a topographically closed, hypersaline lake that occupies a long, linear glacial meltwater channel in the northern Great Plains of western Canada. Most of the modern and late Holocene sediment in the lake has been generated from within the basin itself, either by endogenic inorganic precipitation or by other authigenic processes. These endogenic and authigenic precipitates, composed of mainly very soluble sulfate salts and sparingly soluble carbonates, provide an explicit record of the past chemical and hydrological fluctuations that have occurred in the lake. Although detailed chronostratigraphy is incomplete, preliminary14C dating indicates an age of about 2000 years for the oldest sediment recovered from the basin. Five subsurface sedimentary facies are identified in offshore cores. From the base these are: (i) structureless, gray clay, (ii) gypsiferous mud, (iii) structureless, organic-rich mud, (iv) finely laminated aragonitic mud, and (v) Na and Mg sulfate salts. The lithostratigraphy and variation in the mineralogical composition of the sediment indicate that Little Manitou Lake experienced significant water level changes and compositional fluctuations during the past several millennia. The basal clays indicate a relatively deep, freshwater lake existed about 2000 years ago, but was soon followed by a period of low water/playa sedimentation and a negative hydrological budget in the basin. Water levels gradually increased after about 1500 years ago in response to a cooler and wetter climate. This resulted in development of a meromictic, saline to hypersaline lake characterized by periodic carbonate (aragonite) whitings. Water levels again decreased about 1000 years ago, resulting in a breakdown of meromixis and initiation of subaqueous evaporitic salt precipitation. Although the brine in Little Manitou Lake has fluctuated between Na-SO4 and Mg-Na-SO4 -Cl types during the past 1000 years, water levels and overall salinities have remained relatively constant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of paleolimnology 9 (1993), S. 23-39 
    ISSN: 1573-0417
    Keywords: northern Great Plains ; mineralogy ; carbonates ; grain size ; lacustrine stratigraphy ; Holocene ; Saskatchewan
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract Harris Lake, a small, groundwater fed lake in the Cypress Hills area of Saskatchewan, is one of the few lacustrine basins in the Great Plains that contains a complete, uninterrupted record of Holocene sedimentation. The lithostratigraphy and variation in the mineralogical composition of the sediments in this basin provide insight into the paleolimnology and paleohydrology of the lake and surrounding watershed. Although there is no evidence that the basin was dry for extended periods during the Holocene, the lake did experience numerous short-lived episodes of high salinity, as well as significant changes in solute composition during the early to mid-Holocene. An abrupt change, from a lake dominated by detrital sediments to one characterized almost entirely by endogenic deposition, occurred about 4000 years ago in response to the combined influence of forestation of the watershed and diversion of major fluvial and detrital influx by landsliding. These adjustments to the Harris Lake drainage basin were likely the result of the onset of cooler and wetter climatic conditions after 4500 B.P. During the late Holocene, slope failure continued to sporadically provide fresh clastic material to the otherwise endogenic-sediment dominated lake.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...