ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 22 (1995), S. 67-80 
    ISSN: 1573-0662
    Keywords: biomass burning ; halocarbons ; hydrocarbons ; methylchloride ; emission ratios
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract A field study of trace gas emissions from biomass burning in Equatorial Africa gave methyl chloride emission ratios of 4.3×10−5±0.8×10−5 mol CH3Cl/mol CO2. Based on the global emission rates for CO2 from biomass burning we estimate a range of 226−904×109 g/y as global emission rate with a best estimate of 515×109 g/y. This is somewhat lower than a previous estimate which has been based on laboratory studies. Nevertheless, our emission rate estimates correspond to 10–40% of the global turnover of methyl chloride and thus support the importance of biomass burning as methyl chloride source. The emission ratios for other halocarbons (CH2Cl2, CHCl3, CCl4, CH3CCl3, C2HCl3, C2Cl4, F-113) are lower. In general there seems to be a substantial decrease with increasing complexity of the compounds and number of halogen atoms. For dichloromethane biomass burning still contributes significantly to the total global budget and in the Southern Hemisphere biomass burning is probably the most important source for atmospheric dichloromethane. For the global budgets of other halocarbons biomass burning is of very limited relevance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0662
    Keywords: biomass burning ; hydrocarbons ; methane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Atmospheric samples from savanna burnings were collected in the Ivory Coast during two campaigns in January 1989 and January 1991. About 30 nonmethane hydrocarbons from C2 to C6, carbon monoxide, carbon dioxide and methane were measured from the background and also at various distances from the burning. Concentrations in the fire plume reached ppmv levels for C2-C4 hydrocarbons, and 5300, 500 and 93 ppmv for CO2, CO and CH4 respectively. The excess in the mixing ratios of these gases above their background level is used to derive emission factors relative to CO and CO2. For the samples collected immediately in the fire plume, a differentiation between high and low combustion efficiency conditions is made by considering the CO/CO2 ratio. Ethene (C2H4), acetylene (C2H2), ethane (C2H6) and propene (C3H6) are the major NMHC produced in the flaming stage, whereas a different pattern with an increasing contribution of alkanes is observed in samples typical of post flaming processes. A strong correlation between methane and carbon monoxide suggests that these compounds are produced during the same stage of the combustion. In samples collected at a distance from the fire and integrated over a period of 30 minutes, the composition is very similar to that of flaming. ΔNMHC/ΔCO2 is of the order of 0.7%, ΔCH4/ΔCO2 of the order of 0.4% and ΔCO/ΔCO2 of the order of 6.3%. From this study, a global production by African savanna fires is derived: 65 Tg of CO-C, 4.2 Tg of CH4-C and 6.7 Tg of NMHC-C. Whereas acetylene can be used as a conservative tracer of the fire plumes, only ethene, propene and butenes can be considered in terms of their direct photochemical impact.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...