ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • apical membrane  (1)
  • intracellular Ca2+  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 95 (1987), S. 151-162 
    ISSN: 1432-1424
    Keywords: amiloride ; apical membrane ; Ca2+ inhibition ; epithelial transport ; membrane vesicles ; Na+ channels ; toad bladder
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Direct inhibitory effects of Ca2+ and other ions on the epithelial Na+ channels were investigated by measuring the amiloride-blockable22Na+ fluxes in toad bladder vesicles containing defined amounts of mono- and divalent ions. In agreement with a previous report (H.S. Chase, Jr., and Q. Al-Awqati,J. Gen. Physiol. 81:643–666, 1983) we found that the presence of micromolar concentrations of Ca2+ in the internal (cytoplasmic) compartment of the vesicles substantially lowered the channel-mediated fluxes. This inhibition, however, was incomplete and at least 30% of the amiloride-sensitive22Na+ uptake could not be blocked by Ca2+ (up to 1mm). Inhibition of channels could also be induced by millimolar concentrations of Ba2+, Sr2+, or VO2+, but not by Mg2+. The Ca2+ inhibition constant was a strong function of pH, and varied from 0.04 μm at pH 7.8 to 〉10 μm at pH 7.0 Strong pH effects were also demonstrated by measuring the pH dependence of22Na+ uptake in vesicles that contained 0.5 μm Ca2+. This Ca2+ activity produced a maximal inhibition of22Na+ uptake at pH≥7.4 but had no effect at pH≤7.0. The tracer fluxes measured in the absence of Ca2+ were pH independent over this range. The data is compatible with the model that Ca2+ blocks channels by binding to a site composed of several deprotonated groups. The protonation of any one of these groups prevents Ca2+ from binding to this site but does not by itself inhibit transport. The fact that the apical Na+ conductance in vesicles, can effectively be modulated by minor variations of the internal pH near the physiological value, raises the possibility that channels are being regulated by pH changes which alter their apparent affinity to cytoplasmic Ca2+, rather than, or in addition to changes in the cytoplasmic level of free Ca2+.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 99 (1987), S. 93-101 
    ISSN: 1432-1424
    Keywords: K+,Na+ transport ; intracellular Ca2+ ; pH ; membrane depolarization ; quinine ; quinidine ; lidocaine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary 86Rb+ fluxes have been measured in suspensions of vesicles prepared from the epithelium of toad urinary bladder. A readily measurable barium-sensitive, ouabain-insensitive component has been identified; the concentration of external Ba2+ required for half-maximal inhibition was 0.6mm. The effects of externally added cations on86Rb+ influx and efflux have established that this pathway is conductive, with a selectivity for K+, Rb+ and Cs+ over Na+ and Li+. the Rb+ uptake is inversely dependent on external pH, but not significantly affected by internal Ca2+ or external amiloride, quinine, quinidine or lidocaine. It is likely, albeit not yet certain, that the conductive Rb+ pathway is incorporated in basolateral vesicles oriented right-side-out. It is also not yet clear whether this pathway comprises the principle basolateral K+ channel in vivo, and that its properties have been unchanged during the preparative procedures. Subject to these caveats, the data suggest that the inhibition by quinidine of Na+ transport across toad bladder does not arise primarily from membrane depolarization produced by a direct blockage of the basolateral channels. It now seems more likely that the quinidine-induced elevation of intracellular Ca2+ activity directly blocks apical Na+ entry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...