ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of peptide research and therapeutics 7 (2000), S. 151-156 
    ISSN: 1573-3904
    Keywords: antimicrobial peptide ; Bacillus cereus ; bacterial membrane ; Staphylococcus epidermidis ; 31P NMR
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary Amphibian skin is a rich source of peptides that are specific to pathogens and act by disrupting bacterial membranes. Three antimicrobial peptides were isolated from the skin glands of Australian tree frogs,Litoria caerulea andLitoria genimaculata. NMR spectroscopy was used to observe changes induced by these peptides in the31P resonances of bacterial membranes in vivo. Caerin 1.1 and maculatin 1.1, both wide-spectrum antibiotics disrupted the membranes ofBacillus cereus andStaphylococcus epidermidis (Gram-positive), leading to an increase in the isotropic31P NMR signal. Caerin 4.1, a narrow-spectrum antibiotic, however, did not affect the31P spectra of these organisms. The results demonstrate the use of31P NMR to study the effects of membrane-disrupting agents on the membranes of live bacteria.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of peptide research and therapeutics 7 (2000), S. 151-156 
    ISSN: 1573-3904
    Keywords: antimicrobial peptide ; Bacillus cereus ; bacterial membrane ; Staphylococcus epidermidis ; 31P NMR
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Amphibian skin is a rich source of peptides that are specificto pathogens and act by disrupting bacterial membranes. Threeantimicrobial peptides were isolated from the skin glands ofAustralian tree frogs, Litoria caerulea and Litoriagenimaculata. NMR spectroscopy was used to observe changesinduced by these peptides in the 31P resonances of bacterialmembranes in vivo. Caerin 1.1 and maculatin 1.1, both wide-spectrum antibiotics, disrupted the membranes ofBacillus cereus and Staphylococcus epidermidis (Gram-positive), leadingto an increase in the isotropic 31P NMR signal. Caerin 4.1, anarrow-spectrum antibiotic, however, did not affect the 31Pspectra of these organisms. The results demonstrate the use of31P NMR to study the effects of membrane-disrupting agents onthe membranes of live bacteria.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...