ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 19 (1999), S. 327-340 
    ISSN: 1572-8986
    Keywords: Thermal plasmas ; induction plasma reactor ; toxic wastes ; energy distribution ; mass balance ; energy balance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract A study of the treatment of liquid wastes in a radio frequency (rf) induction plasma reactor is reported. Ethylene glycol was used as a surrogate for the waste because of safety considerations. Thermodynamic analyses demonstrated complete and safe decomposition at the conditions studied. The solution was injected axially into the center of an argon–oxygen plasma operated at a plate power of 50 kW to study blast atomization and operating conditions. A factorial analysis revealed, at a confidence level of 0.99, that both reduction of pressure and liquid flow rate increase the destruction and removal efficiency (DRE) and that a higher plate power increased DRE. The study also revealed that poor atomization was responsible for the reduction of the DRE by 10–15% (to 80–85%) and that 94% of the exothermic energy of the reaction was available for further use. The specific energy requirement (SER) of the process was estimated at 8.33 kWh/kg of solute. This value can be expected to drop significantly with scale-up of the process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 14 (1994), S. 437-450 
    ISSN: 1572-8986
    Keywords: Volumetric emission ; argon plasma ; metal vapors ; iron ; aluminum ; silicon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract The net volumetric emission was calculated for argon plasmas at atmospheric pressure in the presence of metal vapors for different elements, over the temperature range from 3000 to 30,000 K. The computations are based on the escape factor model, using a semi-empirical method for the determination of line profiles and line broadening effects. Results for iron, .silicon, and aluminum show an important influence of the presence of even the smallest concentrations of the metal vapors on the net emission coefficient of the plasma. The effect is strongest for iron, followed by aluminum and .silicon. Special attention is given to self-absorption effects which are most important in the first millimeter o% the optical path of the emitted radiation. The effect is incorporated into the calculation procedure of the net emission coefficient and can be used as a volumetric energy sink as long as the absorption length is shorter than the radius of the control volume used in the computation scheme.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...