ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • algorithm scalability  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of supercomputing 14 (1999), S. 257-280 
    ISSN: 1573-0484
    Keywords: algorithm scalability ; conjugate gradient squared ; modified conjugate gradient squared ; Intel Paragon ; IBM SP-2 ; MIMD ; synchronization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract The conjugate gradient squared (CGS) algorithm is a Krylov subspace algorithm that can be used to obtain fast solutions for linear systems (Ax=b) with complex nonsymmetric, very large, and very sparse coefficient matrices (A). By considering electromagnetic scattering problems as examples, a study of the performance and scalability of this algorithm on two MIMD machines is presented. A modified CGS (MCGS) algorithm, where the synchronization overhead is effectively reduced by a factor of two, is proposed in this paper. This is achieved by changing the computation sequence in the CGS algorithm. Both experimental and theoretical analyses are performed to investigate the impact of this modification on the overall execution time. From the theoretical and experimental analysis it is found that CGS is faster than MCGS for smaller number of processors and MCGS outperforms CGS as the number of processors increases. Based on this observation, a set of algorithms approach is proposed, where either CGS or MGS is selected depending on the values of the dimension of the A matrix (N) and number of processors (P). The set approach provides an algorithm that is more scalable than either the CGS or MCGS algorithms. The experiments performed on a 128-processor mesh Intel Paragon and on a 16-processor IBM SP2 with multistage network indicate that MCGS is approximately 20% faster than CGS.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...