ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • aldosterone  (2)
  • apical Na+ entry  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 90 (1986), S. 193-205 
    ISSN: 1432-1424
    Keywords: aldosterone ; mineralocorticoids ; Na+ channels ; Na+/K+ ATPase ; Na+ transport ; tight epithelia ; toad bladder
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1424
    Keywords: aldosterone ; metabolic regulation ; sodium permeability ; toad bladder
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary In the present study, further evidence was adduced for energy-dependent regulation of passive apical transport of Na in toad bladder epithelium. In potassium-depolarized preparations studied by current-voltage analysis, additions of pyruvate or glucose to the media of substrate-depleted bladders evoked propertionate increases in the transepithelial Na current and in apical Na permeability. These reponses were large in aldosterone pretreated hemibladders and almost absent in the aldosterone-depleted preparations or when hormonal action was blocked by spironolactone or cycloheximide. The substrateinduced increases in apical Na permeability were fully reversed by appropriate metabolic inhibitors, i.e. 2-deoxyglucose and oxythiamine. Moreover, the inhibitory effect of 2-deoxyglucose was bypassed by the addition of pyruvate to the serosal medium. Thus apical Na permeability is clearly sensitive to the supply of cellular energy. The possibility that changes in intrcellular free Na activity may mediate metabolic regulation of apical Na permeability was evaluated by prolonged exposure to Na-free mucosal and serosal media, with and without inhibition of the Na/K-pump by ouabain. The stimulatory and inhibitory effects of pyruvate, 2-deoxyglucose and oxythiamine on Na currents and Na conductances were preserved under these circumstances. Furthermore, reduction of serosal Ca to a minimal level of 3 μm, was without effect on the response to metabolic inhibition. These experiments demonstrate the existence of Na-independent metabolic regulation of apical Na transport and imply that neither basal-lateral nor mitochondrial Na/Ca exchange is required for this regulatory process under the imposed conditions. The possibility that a Na-independent, Ca transport mechanism in mitochondria or endoplasmic reticulum may be involved in metabolic regulation of apical Na transport, however, remains to be evaluated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 87 (1985), S. 67-75 
    ISSN: 1432-1424
    Keywords: sodium channels ; pH dependence ; mucosal acidification ; intracellular pH ; apical Na+ entry ; Na+ permeability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary We have examined the effect of internal and external pH on Na+ transport across toad bladder membrane vesicles. Vesicles prepared and assayed with a recently modified procedure (Garty & Asher, 1985) exhibit large, rheogenic, amiloridesensitive fluxes. Of the total22Na uptake measured 0.5–2.0 min after introducing tracer, 80±4% (mean±se,n=9) is blocked by the diuretic with aK 1 of 2×10−8 m. Thus, this amiloridesensitive flux is mediated by the apical sodium-selective channels. Varying the internal (cytosolic) pH over the physiologic range 7.0–8.0 had no effect on sodium transport; this result suggests that variation of intracellular pHin vivo has no direct apical effect on modulating sodium uptake. On the other hand,22Na was directly and monotonically dependent on external pH. External acidification also reduced the amiloride-sensitive efflux across the walls of the vesicles. This inhibition of22Na efflux was noted at external Na+ concentrations of both 0.2 μm and 53mm. These results are different from those reported with whole toad bladder. A number of possible bases for these differences are considered and discussed. We suggest that the natriferic response induced by mucosal acidification of whole toad urinary bladder appears to operate indirectly through one or more factors, presumably cytosolic, present in whole cells and absent from the vesicles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...