ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • adhesion molecules  (1)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 502-513 
    ISSN: 0730-2312
    Keywords: NCAM ; glycoproteins ; nervous system ; adhesion molecules ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The Neural Cell Adhesion Molecule (NCAM) is a founder member of a large family of cell surface glycoproteins that share structural motifs related to immunoglobulin and fibronectin type III (FN III) domains [Walsh and Doherty (1991) (Fig. 1). These glycoproteins have been grouped based on the respective number of each type of domain. In vertebrates members of this family of glycoproteins include L1/NILE, NgCAM, axonin-1/TAG-1, and Thy-1 as well as NCAM. In addition structural homologs of NCAM and L1 have been identified in Drosophila and Grasshoppers [Walsh and Doherty (1991)]. These insect homologs are called fasciclins and a series of mutants corresponding to these genes have been isolated. A homologue of NCAM has been identified in Aplysia where it may play a role in regulating aspects of synaptic plasticity [Mayford et al. (1992) Science 256:638-644]. In vertebrates all of these glycoproteins are expressed in the developing nervous system where they have been identified as candidate molecules for mediating axon outgrowth, fasciculation, regeneration, and target recognition. In addition, NCAM is expressed in a number of different tissues and cell types. For example, NCAM is expressed in a dynamic pattern in developing and regenerating adult muscle. In this review we aim to describe important aspects of the role of these CAMs in development of the nervous system, including the neuromuscular junction. Furthermore, we will explore the prospective use of molecular biology, cell biology, and molecular genetic techniques, such as transgenic mice, to understand the role and molecular action of this family of cell adhesion molecules in vivo. © 1996 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...