ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • actual N loss  (2)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Plant and soil 121 (1990), S. 21-30 
    ISSN: 1573-5036
    Schlagwort(e): actual N loss ; flooded soils ; 15N balance ; potential N loss ; urea ; water-soluble N
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract One day after application, urea-N remaining in the floodwater and determined as water-soluble N (urea-N + NH4 +-N) was used to calculate the potential N loss from lowland rice soils. Actual N loss calculated from 15N balance measurements using forced air exchange (airflow rate: 20 L min-1) in greenhouse pots. Conditions for variable potential N loss were created by manipulating the method of urea application and duration of presubmergence or by selecting soils with diverse cation exchange capacities (CEC). Potential N loss tended to be lower than actual N loss; the differences were, however, nonsignificant. The method of urea application that led to the lowest potential N loss from a Guthrie silty clay loam (Typic Fragiaquult) also led to the least 15N loss and vice-versa (r=0.99**). Duration of presubmergence did not alter the relationship between potential and actual N loss although it influenced the rate of urea hydrolysis in floodwater. The primary depencence of actual N loss on water-soluble N was maintained in soils differing in CEC (r=0.83**). The association between potential and actual N loss was closer for high-CEC soils (≥ 20 cmol [+] kg-1 soil, r=0.91**) than for low-CEC soils (〈20 cmol [+] kg-1 soil, r=0.85**). Ammonia volatilization could be more closely predicted by potential N loss than could apparent denitrification. The results of this study suggest that potential N loss calculated from one-time determination of water-soluble N in floodwater can be a good index of actual N loss from flooded, puddled rice soils. Notable exceptions are to be expected for soils in which water-soluble N gets lost from floodwater either before (soils with fast urea hydrolysis in floodwater) or after (soils with steady leaching) determination of potential N loss.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Plant and soil 122 (1990), S. 21-30 
    ISSN: 1573-5036
    Schlagwort(e): actual N loss ; flooded soils ; 15N balance ; potential N loss ; urea ; water-soluble N
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract One day after application, urea-N remaining in the floodwater and determined as water-soluble N (urea-N + NH4 +-N) was used to calculate the potential N loss from lowland rice soils. Actual N loss calculated from15N balance measurements using forced air exchange (airflow rate: 20 L min-1) in greenhouse pots. Conditions for variable potential N loss were created by manipulating the method of urea application and duration of presubmergence or by selecting soils with diverse cation exchange capacities (CEC). Potential N loss tended to be lower than actual N loss; the differences were, however, nonsignificant. The method of urea application that led to the lowest potential N loss from a Guthrie silty clay loam (Typic Fragiaquult) also led to the least15N loss andvice-versa (r=0.99**). Duration of presubmergence did not alter the relationship between potential and actual N loss although it influenced the rate of urea hydrolysis in floodwater. The primary depencence of actual N loss on water-soluble N was maintained in soils differing in CEC (r=0.83**). The association between potential and actual N loss was closer for high-CEC soils (≥ 20 cmol [+] kg-1 soil, r=0.91**) than for low-CEC soils (〈20 cmol [+] kg-1 soil, r=0.85**). Ammonia volatilization could be more closely predicted by potential N loss than could apparent denitrification. The results of this study suggest that potential N loss calculated from one-time determination of water-soluble N in floodwater can be a good index of actual N loss from flooded, puddled rice soils. Notable exceptions are to be expected for soils in which water-soluble N gets lost from floodwater either before (soils with fast urea hydrolysis in floodwater) or after (soils with steady leaching) determination of potential N loss.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...