ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-9001
    Keywords: Cyclopentene-fused PAH ; AM1 ; MMX ; MNDO ; X-ray ; neutron diffraction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Several of the readily available theoretical programs are evaluated as tools for modeling the structures of polycyclic aromatic hydrocarbons with five-membered rings (CPAHs). The experimentally determined bond lengths and angles are compared to calculated values. Experimental bond lengths are also compared to Pauling and Huckel molecular orbital (HMO) bond orders. Previously published experimental X-ray and neutron-diffraction structures of acenaphthene, acenaphthylene, fluoranthene, cyclopent[o,p,q,r]benz[c]phenanthrene, and corannulene are modeled by the programs MMX, AM1, MNDO, and PM3, and previously reported STO-3G and 6-31G * data are also evaluated. In general, the error differences between the experimental and calculated results for all of the semiempirical programs were small. However, PM3 performed slightly better than AM1 and MMX, while MNDO generated structures which exhibited the largest deviation from experiment. Although the standard deviations for all programs are shown to be of comparable magnitude, a particular bond length or bond angle in any given theoretical calculation can exhibit significant error from the experimental data. The scatter in the bond order data computed from Huckel molecular orbital theory and valence bond theory is contrary to results obtained with alternant systems. It appears that these approaches are less successful at modeling accurately the nonalternant hydrocarbon systems described in this paper.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...