ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 193 (1994), S. 44-50 
    ISSN: 1432-2048
    Keywords: Glycine ; Growth ; Osmotic potential ; Threshold turgor ; Turgor ; Water potential
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The guillotine thermocouple psychrometer allows auxin action on cell enlargement to be investigated in intact plants. Because the technique measures all the physical parameters affecting enlargement in the same plants, close comparisons can be made of the changes brought about by this growth regulator. In etiolated seedlings of soybean (Glycine max L. Merr.), auxin was supplied endogenously by the intact plant or was depleted by removing the apical portion of the stem. We observed that, when stem growth was rapid in the intact plant, the water potential of the growing region was lower than in the nongrowing region but, as growth slowed during auxin depletion, the water potential rose until it became essentially the same as in the nongrowing region. This indicated that gradients in water potential had been induced by the demand for water during rapid growth but had decreased as growth decreased in the auxin-depleted cells. The turgor appeared to rise slightly as growth slowed which is in the wrong direction to account for the growth change unless compensating changes occurred in wall properties and/or synthesis. As growth ceased in the auxin-depleted tissue, the threshold turgor rose until it became nearly the same as the cell turgor, which indicates that auxin affected this wall parameter. The osmotic potential increased slightly, probably because of a dilution of the cell contents by the residual growth occurring after the stem apex (and cotyledons) had been removed. The hydraulic conductance for water was unaffected by auxin status whether it was measured in the whole enlarging region or in individual cortical cells from the region. It was concluded that auxin acts mainly on the metabolism of the cell walls manifested by the change in growth rate and threshold turgor. The other changes were passive responses to the changed growth rate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Cell wall relaxation ; Cell elongation ; Glycine (growth control) ; Turgor pressure ; Water potential
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A new guillotine thermocouple psychrometer was used to make continuous measurements of water potential before and after the excision of elongating and mature regions of darkgrown soybean (Glycine max L. Merr.) stems. Transpiration could not occur, but growth took place during the measurement if the tissue was intact. Tests showed that the instrument measured the average water potential of the sampled tissue and responded rapidly to changes in water potential. By measuring tissue osmotic potential (Ψ s ), turgor pressure (Ψ p ) could be calculated. In the intact plant, Ψ s and Ψ p were essentially constant for the entire 22 h measurement, but Ψ s was lower and Ψ p higher in the elongating region than in the mature region. This caused the water potential in the elongating region to be lower than in the mature region. The mature tissue equilibrated with the water potential of the xylem. Therefore, the difference in water potential between mature and elongating tissue represented a difference between the xylem and the elongating region, reflecting a water potential gradient from the xylem to the epidermis that was involved in supplying water for elongation. When mature tissue was excised with the guillotine, Ψ s and Ψ p did not change. However, when elongating tissue was excised, water was absorbed from the xylem, whose water potential decreased. This collapsed the gradient and prevented further water uptake. Tissue Ψ p then decreased rapidly (5 min) by about 0.1 MPa in the elongating tissue. The Ψ p decreased because the cell walls relaxed as extension, caused by Ψ p , continued briefly without water uptake. The Ψ p decreased until the minimum for wall extension (Y) was reached, whereupon elongation ceased. This was followed by a slow further decrease in Y but no additional elongation. In elongating tissue excised with mature tissue attached, there was almost no effect on water potential or Ψ p for several hours. Nevertheless, growth was reduced immediately and continued at a decreasing rate. In this case, the mature tissue supplied water to the elongating tissue and the cell walls did not relax. Based on these measurements, a theory is presented for simultaneously evaluating the effects of water supply and water demand associated with growth. Because wall relaxation measured with the psychrometer provided a new method for determining Y and wall extensibility, all the factors required by the theory could be evaluated for the first time in a single sample. The analysis showed that water uptake and wall extension co-limited elongation in soybean stems under our conditions. This co-limitation explains why elongation responded immediately to a decrease in the water potential of the xylem and why excision with attached mature tissue caused an immediate decrease in growth rate without an immediate change in Ψ p
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...