ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © University of Chicago, 2011. This article is posted here by permission of University of Chicago for personal use, not for redistribution. The definitive version was published in American Naturalist 177 (2011): 681-690, doi:10.1086/659626.
    Description: It might seem obvious that a camouflaged animal must generally match its background whereas to be conspicuous an organism must differ from the background. However, the image parameters (or statistics) that evaluate the conspicuousness of patterns and textures are seldom well defined, and animal coloration patterns are rarely compared quantitatively with their respective backgrounds. Here we examine this issue in the Australian giant cuttlefish Sepia apama. We confine our analysis to the best-known and simplest image statistic, the correlation in intensity between neighboring pixels. Sepia apama can rapidly change their body patterns from assumed conspicuous signaling to assumed camouflage, thus providing an excellent and unique opportunity to investigate how such patterns differ in a single visual habitat. We describe the intensity variance and spatial frequency power spectra of these differing body patterns and compare these patterns with the backgrounds against which they are viewed. The measured image statistics of camouflaged animals closely resemble their backgrounds, while signaling animals differ significantly from their backgrounds. Our findings may provide the basis for a set of general rules for crypsis and signals. Furthermore, our methods may be widely applicable to the quantitative study of animal coloration.
    Description: S.Z. was supported by a Case award from the Biotechnology and Biological Sciences Research Council and QinetiQ and is currently supported by Office of Naval Research (ONR) grant N00014-09-1-1053. R.T.H. received partial support from ONR grant N0001406-1- 0202.
    Keywords: Camouflage ; Communication ; Signaling ; Image structure ; Cephalopods ; Vision
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Evolutionary Biology 13 (2013): 187, doi:10.1186/1471-2148-13-187.
    Description: We recently reported (Curr Biol 22:683–688, 2012) that the eyes of giant and colossal squid can grow to three times the diameter of the eyes of any other animal, including large fishes and whales. As an explanation to this extreme absolute eye size, we developed a theory for visual performance in aquatic habitats, leading to the conclusion that the huge eyes of giant and colossal squid are uniquely suited for detection of sperm whales, which are important squid-predators in the depths where these squid live. A paper in this journal by Schmitz et al. (BMC Evol Biol 13:45, 2013) refutes our conclusions on the basis of two claims: (1) using allometric data they argue that the eyes of giant and colossal squid are not unexpectedly large for the size of the squid, and (2) a revision of the values used for modelling indicates that large eyes are not better for detection of approaching sperm whales than they are for any other task. We agree with Schmitz et al. that their revised values for intensity and abundance of planktonic bioluminescence may be more realistic, or at least more appropriately conservative, but argue that their conclusions are incorrect because they have not considered some of the main arguments put forward in our paper. We also present new modelling to demonstrate that our conclusions remain robust, even with the revised input values suggested by Schmitz et al.
    Keywords: Vision ; Eyes ; Giant squid ; Sperm whale ; Bioluminescence ; Mesopelagic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...