ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0878
    Keywords: Myofibrils ; Cytoskeleton ; Extracellular matrix ; Laminin ; Collage ; Actin filaments ; Vinculin-Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Neonatal rat cardiomyocytes were cultured on extracellular matrix components laminin and collagens I+III to examine effects of extracellular matrix on the assembly of cytoskeletal proteins during myofibrillogenesis. Myofibril assembly was visualized by immunofluorescence of marker proteins for myofibrils (f-actin for I bands and α-actinin for Z bands), focal adhesions (vinculin), and transmembrane extracellular matrix receptors (β1 integrin) as cells spread for various times in culture. By 4 h in culture, f-actin appeared organized into nonstriated stress-fiber-like structures while α-actinin, vinculin and β1 integrin were localized in small streaks and beads. Subsequently, striated patterns were observed sequentially in the intracellular cytoskeletal components α-actinin, vinculin, f-actin, and then in the transmembrane β1 integrin receptor. These data support an earlier model for sarcomerogenesis in which stress-fiber-like structures serve as initial scaffolds upon which α-actinin and then vinculin-containing costameres are assembled. This sequential and temporal assembly was the same on both laminin and collagens I+III. A quantitative difference, however, was apparent on the 2 matrices. There was an increased appearance on collagens I+III of rosettes (also called podosomes or cortical actin-containing bodies in other cells) which consisted of an f-actin core surrounded by α-actinin, vinculin and β1 integrin rims. The increased incidence of rosettes in neonatal myocytes on collagens I+III suggests that these cytoskeletal complexes are involved in recognition and interaction with extracellular matrix components.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...