ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Urate  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental biology online 3 (1998), S. 1-11 
    ISSN: 1430-3418
    Keywords: Gecarcoidea natalis ; Land crab ; Urate metabolism ; Urate ; Urease ; Uricase ; Xanthine dehydrogenase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This study investigated the sites of urate synthesis and catabolism in the gecarcinid land crab Gecarcoidea natalis by assaying spongy connective tissue, midgut gland, muscle and gill for xanthine oxidoreductase, the last enzyme involved in urate synthesis, and uricase and urease, the first and last enzymes involved in urate catabolism. The spongy connective tissue and midgut gland of the G. natalis contained activities of xanthine oxidoreductase and were considered to be sites of urate synthesis. The midgut gland had a high activity of xanthine oxidoreductase [(58.87±4.6 (SE) nmol urate produced g-1 wet wt. tissue min-1], 2.7 times the xanthine oxidoreductase activity contained within the spongy connective tissue, and was thought to be the main site of urate synthesis. Xanthine dehydrogenase (EC 1.1.1.204) was the only form of xanthine oxidoreductase detected within the tissues. Its presence means that the cost of synthesising urate de novo is relatively small (between 1 and 3 ATP). Uricase (EC 1.7.3.3) and urease (EC 3.5.1.5) activities were present in the tissues of G. natalis. Spongy connective tissue contained the highest activities of uricase [48.44±4.29 (SE) nmol urate consumed g-1 wet wt. tissue min-1] while the highest activities of urease [365.31±37.21 (SE) nmol urate consumed g-1 wet wt tissue min-1] were contained within the gills. From this evidence it is clear that G. natalis possesses the uricolytic pathway and hence the ability to catabolise urate, and urate catabolism is begun at the site of urate storage, the spongy connective tissue, and is completed at the gills. As the gills are the site of ammonia excretion in this species the ammonia produced from the catabolism of urate is probably excreted. The urate deposits within the body of G. natalis may be involved in temporary storage of nitrogenous wastes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...