ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: In the last years, unmanned aerial vehicle (UAV) systems have become very attractive for various commercial, industrial, public, scientific, and military operations. Potential tasks include pipeline inspection, dam surveillance, photogrammetric survey, infrastructure maintenance, inspection of flooded areas, fire fighting, terrain monitoring, volcano observations, and any utilization which requires land recognition with cameras or other sensors. The flying capabilities provided by UAVs require a welltrained pilot to be fully and effectively exploited; moreover the flight range of the piloted helicopter is limited to the line-of-sight or the skill of the pilot to detect and follow the orientation of the helicopter. Such issues are even more important considering that the vehicle will carry and operate automatically a camera used for a photogrammetric survey. All this has motivated research and design for autonomous guidance of the vehicle which could both stabilize and guide the helicopter precisely along a reference path. The constant growth of research programs and the technological progress in the field of navigation systems, as denoted by the production of more and more performing global positioning systems integrated with inertial navigation sensors, allowed a strong cost reduction and payload miniaturization, making the design of low-cost UAV platforms more feasible and attractive. In this paper, we present the results of a flight simulation system developed for the setup of the vehicle’s servos, which our autonomous guidance system, as well as the module for camera photogrammetric image acquisition and synchronization, will be based on. Building a simulated environment allows to evaluate in advance what the main issues of a complex control system are to avoid damage of fragile and expensive instruments as the ones mounted on a model helicopter and to test methods for synchronization of the camera with flight parameters.
    Description: Published
    Description: 85-95
    Description: 1.10. TTC - Telerilevamento
    Description: N/A or not JCR
    Description: reserved
    Keywords: UAV ; Model helicopter ; Kalman filter ; MEMS ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In the last years UAV (Unmanned Aerial Vehicle) systems are become very actractive for various commercial, industrial, public, scientific and military operations. The tasks include pipeline inspection, dam surveillance, photogrammetric survey, infrastructure maintenance, inspection of flooded areas, fire fighting, terrain monitoring, volcano observations and so on. The impressive flying capabilities provided by UAVs require a well trained pilot to be fully and effectively exploited; moreover the flight range of the piloted helicopter is limited to the line-of-sight or the skill of the pilot to detect and follow the orientation of the helicopter. Such issues have motivated the research and the design for autonomous system guidance which could both stabilize and also guide the helicopter precisely along a reference path. The constant growth of research programs and the technological progress in the field of navigation systems, as denoted by the production of more and more performing GPS/INS integrated units, allowed a strong cost reduction and payload miniaturization, making the design of low cost UAV platforms more feasible and actractive. Small autonomous helicopters have demonstrated to be a useful platform for a number of airborne-based applications such as aerial mapping and photography, surveillance (both military and civilian), powerline inspection and agricolture monitoring. In this paper we present the results of a flight simulation system developed for the setup of the servos which our autonomous guidance system will be based on. Building a simulated environment allows, indeed, to evaluate in advance what are the main issues of a complex control system, avoiding to damage fragile and expensive instruments as the ones mounted on a model helicopter.
    Description: Istituto Nazionale di Geofisica e Vulcanologia - Napoli CIRGEO – Interdepartment Research Center for Geomatics, University of Padova
    Description: Published
    Description: Beijing (CHINA)
    Description: 1.10. TTC - Telerilevamento
    Description: open
    Keywords: UAV ; model helicopter ; Kalman filter ; MEMS ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...