ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 91 (1995), S. 1064-1073 
    ISSN: 1432-2242
    Keywords: Poaceae ; Triticeae ; Population structure ; Sampling strategy ; Genetic resource ; Conservation biology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Dasypyrum villosum (L.) Candargy is a weedy annual diploid (2n = 14, VV genomes) allogamous grass species (Poaceae, Triticeae). Genetic variation for 12 traits was studied in 43 natural populations (31 from Italy and 12 from Croatia and Montenegro of former Yugoslavia) grown in a common field environment in California. Although 7 of 12 traits followed the theoretical prediction that a larger proportion of genetic variation was distributed within populations than among populations, exceptions were found for spike length, plant height, and days to flag-leaf emergence, heading, and anthesis. Covariate analysis showed that developmentally closely related characters were more likely correlated at both population and family within population levels. Geographically closer populations shared more genetic similarity than distant populations as indicated by mean coefficients of variation and cluster analysis of the Euclidean distances among populations. As few as five populations, each population with five or more half-sib seeds taken randomly from 5 plants, is expected to capture more than 95% of the total genetic variation of this species in the region sampled, but sampling a much larger number of seeds per population (〉 1000) for long-term storage would supply research and plant breeding needs for several decades. If seed regeneration is required, populations can be sampled from clusters having similar genetic variation, and grown in reproductive isolation or bulked seed samples from all populations of each cluster group can be grown in isolation. The former is recommended if population integrity is desired while the latter is sufficient to provide genetic resources for plant-breeding purposes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 86 (1993), S. 851-858 
    ISSN: 1432-2242
    Keywords: Triticeae ; Poaceae ; Wheat breeding ; Genetic diversity ; Multiple alleles ; Seed storage protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Dasypyrum villosum (L.) Candargy (2n=14, V genome) is a wild, allogamous, diploid grass species that is a potential genetic resource for wheat improvement. The diversity of high-molecular-weight (HMW) glutenin subunits of the seed storage proteins of this species was examined in populations sampled in their natural habitats in Italy and Yugoslavia where the species is widely distributed. The results of selfed progeny tests confirmed that the allelic variation of HMW-glutenin subunits in D. villosum is controlled by a single locus (Glu-V1). Fourteen alleles at Glu-V1 were found among 982 individuals representing 12 populations from Italy and two from Yugoslavia, with a mean of seven alleles per population. Among the 14 Glu-V1 alleles, one produced no HMW-glutenin subunits, ten coded for a single subunit, and three for two subunits. The mobilities of all the subunits in SDS-PAGE gels were greater than that of reference subunit 7 of Triticum aestivum cv Chinese Spring. Eight of the alleles were relatively abundant (mean frequency over all populations ranged from 0.08 to 0.17) and distributed widely among the 14 populations (8 to 14); five of the alleles were rare (0.003 to 0.021) and found in only 1 to 5 populations. The frequencies of two alleles could not be individually estimated because of the similar electrophoretic mobility of their subunits. The multiple-allelic diversity at Glu-V1 was high (He ranged from 0.700 to 0.857) but similar from population to population. Overall, about 7% of the total allelic variation was distributed among populations (Gst=0.072), and more than 90% within populations. Whether the allelic variation at Glu-V1 is subject to natural selection is unknown, but the discovery of the homozygous null Glu-V1 alleles in the present study may be useful in pursuing this question. The multiple-allelic diversity in Glu-V1 presents the plant breeder with an opportunity to evaluate and select the most useful alleles for transfer to wheat. The importance of an evaluation genetic diversity in a wild species before interspecific gene transfers are attempted is well illustrated in this study.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...