ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-12-13
    Description: Because animals require oxygen, an increase in late-Neoproterozoic oxygen concentrations has been suggested as a stimulus for their evolution. The iron content of deep-sea sediments shows that the deep ocean was anoxic and ferruginous before and during the Gaskiers glaciation 580 million years ago and that it became oxic afterward. The first known members of the Ediacara biota arose shortly after the Gaskiers glaciation, suggesting a causal link between their evolution and this oxygenation event. A prolonged stable oxic environment may have permitted the emergence of bilateral motile animals some 25 million years later.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Canfield, Don E -- Poulton, Simon W -- Narbonne, Guy M -- New York, N.Y. -- Science. 2007 Jan 5;315(5808):92-5. Epub 2006 Dec 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nordic Center for Earth Evolution (NordCEE) and Institute of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark. dec@biology.sdu.dk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17158290" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atmosphere ; *Biological Evolution ; *Fossils ; Geologic Sediments/chemistry ; Ice Cover ; Iron/analysis ; Newfoundland and Labrador ; Oxidation-Reduction ; Oxygen/*analysis ; Seawater/*chemistry ; Sulfates/analysis ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-07-19
    Description: Earth's surface chemical environment has evolved from an early anoxic condition to the oxic state we have today. Transitional between an earlier Proterozoic world with widespread deep-water anoxia and a Phanerozoic world with large oxygen-utilizing animals, the Neoproterozoic Era [1000 to 542 million years ago (Ma)] plays a key role in this history. The details of Neoproterozoic Earth surface oxygenation, however, remain unclear. We report that through much of the later Neoproterozoic (〈742 +/- 6 Ma), anoxia remained widespread beneath the mixed layer of the oceans; deeper water masses were sometimes sulfidic but were mainly Fe2+-enriched. These ferruginous conditions marked a return to ocean chemistry not seen for more than one billion years of Earth history.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Canfield, Donald E -- Poulton, Simon W -- Knoll, Andrew H -- Narbonne, Guy M -- Ross, Gerry -- Goldberg, Tatiana -- Strauss, Harald -- New York, N.Y. -- Science. 2008 Aug 15;321(5891):949-52. doi: 10.1126/science.1154499. Epub 2008 Jul 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nordic Center for Earth Evolution and Institute of Biology, Campusvej 55, University of Southern Denmark, 5230 Odense, Denmark. dec@biology.sdu.dk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18635761" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atmosphere ; Geologic Sediments/*chemistry ; Ice Cover ; Iron/*analysis ; Oceans and Seas ; Oxidation-Reduction ; Oxygen/*analysis ; Seawater/*chemistry ; Sulfates/analysis ; Sulfides/analysis ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...