ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    MDPI - Multidisciplinary Digital Publishing Institute
    Publication Date: 2024-04-11
    Description: Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective.
    Keywords: TA1-2040 ; T1-995 ; similarity measure ; swarm-robotics ; drag-based system ; PID algorithm ; human–robot interaction ; behaviour dynamics ; state constraints ; fair optimisation ; micro mobile robot ; robot ; actuators ; high-gain observer ; turning model LIP ; space robot ; manipulation action sequences ; subgoal graphs ; remotely operated vehicle ; constrained motion ; joint limit avoidance ; curvilinear obstacle ; rehabilitation system ; stability criterion ; system design ; quad-tilt rotor ; iterative learning ; spiral curve ; cable detection ; SEA ; douglas–peuker polygonal approximation ; predictable trajectory planning ; ATEX ; obstacle avoidance system ; kinematic singularity ; collision avoidance ; biologically-inspired ; jumping robot ; differential wheeled robot ; design and modeling ; control efficacy ; robotics ; extremum-seeking ; object-oriented ; non-holonomic mobile robot ; magneto-rheological fluids ; rendezvous consensus ; altitude controller ; master-slave ; switching control ; deep reinforcement learning ; mechanism ; expansion logic strategy ; negative buoyancy ; action generation ; radial basis function neural networks ; unmanned aerial vehicles ; extend procedure ; glass façade cleaning robot ; convolutional neural network ; climbing robot ; micro air vehicle ; car-like kinematics ; variable speed ; machine learning ; dynamical model ; transportation ; geodesic ; unmanned surface vessel ; medical devices ; stopper ; extended state observer (ESO) ; high efficiency ; object mapping ; multi-objective optimization ; hybrid robot ; robot learning ; auto-tuning ; cable disturbance modeling ; manipulation planning ; pesticide application ; high-speed target ; sparse pose adjustment (SPA) ; service robot ; lumped parameter method ; Geometric Algebra ; dynamic coupling analysis ; Thau observer ; tri-tilt-rotor ; industrial robotic manipulator ; hardware-in-the-loop simulation ; robotic drilling ; muscle activities ; small size ; chameleon ; continuous hopping ; wall climbing robot ; hover mode ; 3D-SLAM ; curvature constraints ; PSO ; drilling end-effector ; Rodrigues parameters ; gait adaptation ; static environments ; position/force cooperative control ; snake-like robot ; shape-fitting ; powered exoskeleton ; input saturation ; kinematic identification ; methane ; human–machine interactive navigation ; q-learning ; path following ; hopping robot ; mobile manipulation ; high step-up ratio ; actuatorless ; monocular vision ; stability analysis ; compact driving unit ; snake robot ; non-holonomic robot ; curvature constraint ; phase-shifting ; dialytic elimination ; gesture recognition ; snake robots ; series elastic actuator ; flapping ; servo valve ; motion camouflage control ; biomimetic robot ; minimally invasive surgery robot ; centralized architecture ; trajectory planning ; computing time ; adaptive control law ; kinematics ; facial and gender recognition ; single actuator ; victim-detection ; shape memory alloys ; undiscovered sensor values ; discomfort ; Differential Evolution ; numerical evaluation ; quadruped robot ; coverage path planning ; localization ; MPC ; n/a ; fault diagnosis ; neural networks ; disturbance-rejection control ; sample gathering problem ; cart ; bio-inspired robot ; opposite angle-based exact cell decomposition ; optimization ; safety ; goal exchange ; hierarchical planning ; ocean current ; robot motion ; nonlinear differentiator ; mapping ; finite-time currents observer ; Newton iteration ; inverse kinematics ; deposition uniformity ; spatial pyramid pooling ; hierarchical path planning ; end effector ; head-raising ; fault recovery ; LOS ; path tracking ; non-inertial reference frame ; step climbing ; obstacle avoidance ; sliding mode control ; symmetrical adaptive variable impedance ; lane change ; quadcopter UAV ; singularity analysis ; biped mechanism ; fault-tolerant control ; dynamic neural networks ; mobile robots ; data association ; UAV ; enemy avoidance ; reinforcement learning ; grip optimization ; safety recovery mechanism ; exoskeleton ; dynamic environment ; uncertain environments ; hybrid bionic robot ; potential field ; robot navigation ; cleaning robot ; unmanned aerial vehicle ; non-singular fast-terminal sliding-mode control ; contact planning ; Lyapunov-like function ; piezoelectric actuator ; transition mode ; non-prehensile manipulation ; multiple mobile robots ; Tetris-inspired ; real-time action recognition ; integral line-of-sight ; topological map ; alpine ski ; target tracking ; closed-loop detection ; working efficiency ; mathematical modeling ; curve fitting ; force control ; biped robots ; NSGA-II ; mobile robot ; load carriage ; prescription map translation ; artificial fish swarm algorithm ; Q-networks ; self-reconfigurable robot ; G3-continuity ; autonomous vehicle ; loop closure detection ; excellent driver model ; robots ; graph representation ; regional growth ; target assignment ; evolutionary operators ; intelligent mobile robot ; motion sensor ; exploration ; droplets penetrability ; dynamic uncertainty ; simultaneous localization and mapping (SLAM) ; area decomposition ; multi-criteria decision making ; 4WS4WD vehicle ; biped climbing robots ; skiing robot ; ROS ; decision making ; smart materials ; centrifugal force ; missile control system ; formation of robots ; electro-rheological fluids ; pneumatics ; variable spray ; inertial measurement unit (IMU) ; Robot Operating System ; trajectory interpolation ; formation control ; immersion and invariance ; dragonfly ; parallel navigation ; harmonic potential field ; pallet transportation ; mobile robot navigation ; negative-buoyancy ; grip planning ; manipulator ; position control ; external disturbance ; legged robot ; passive skiing turn ; autonomous underwater vehicle (AUV) ; gait cycle ; path planning ; sliding mode observer ; dynamic gait ; self-learning ; polyomino tiling theory ; coalmine ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TB Technology: general issues::TBX History of engineering and technology
    Language: English
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-11
    Description: Energy systems worldwide are undergoing major transformation as a consequence of the transition towards the widespread use of clean and sustainable energy sources. Basically, this involves massive changes in technical and organizational levels together with tremendous technological upgrades in different sectors ranging from energy generation and transmission systems down to distribution systems. These actions generate huge science and engineering challenges and demands for expert knowledge in the field to create solutions for a sustainable energy system that is economically, environmentally, and socially viable while meeting high security requirements. This book covers these promising and dynamic areas of research and development, and presents contributions in sustainable energy systems planning, integration, and management. Moreover, the book elaborates on a variety of topics, ranging from design and planning of small- to large-scale energy systems to the operation and control of energy networks in different sectors, namely electricity, heat, ?and transport.
    Keywords: TA1-2040 ; T1-995 ; n/a ; Romanian coastal environment ; neural networks ; intermittent heating ; wind velocities ; time-space network ; optimal chiller loading (OCL) ; renewable energy ; pure electric buses ; mixed-integer non-linear programming problem (MINLP) ; control system ; FANP ; energy consumption ; load regulation ; energy ; smart box ; novel method ; smart logistics system ; multiple uncertainties ; non-intrusive load monitoring ; wind speed forecasting ; solid waste to energy plant ; uncertain cooling demand ; dual robust optimization ; Black Sea ; field test and numerical simulation ; electric power ; sustainable development ; multi-type bus operating organization ; cuckoo search algorithm ; vehicular emissions ; SWAN ; public transport ; product quality model ; MCDM ; TOPSIS ; heat transfer ; solar energy ; forecasting validity ; information gap decision theory (IGDT) ; photovoltaic systems ; configurations of internal wall ; ensemble empirical mode decomposition ; agricultural pruning ; hot summer and cold winter climate zone ; energy and environmental systems ; feature extraction ; information platform ; pruning biomass ; smart grid ; product usability testing ; meteorological variables ; fuzzy logic ; performance evaluation ; rural residential building ; threshold value of daily operation hours ; datacenter ; wave energy ; thermal comfort ; heat storage and release ; resampling ; risk aversion ; environment ; support vector machine ; internal coverings ; numerical models ; gradient descent ; renewable biomass energy ; demand response ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TB Technology: general issues::TBX History of engineering and technology
    Language: English
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-12-21
    Description: There is abundant evidence showing a strong association between trauma exposure, psychotic symptoms, and posttraumatic stress disorder (PTSD). Early trauma exposure contributes to the formation of psychotic symptoms and the development of psychotic disorders or severe mental illnesses such as schizophrenia, bipolar disorder, and treatment-refractory major depression. Furthermore, among persons with psychotic disorders, multiple traumatization over the lifetime is common, due to factors such as social stigma, the criminalization of severe mental illness, and increased vulnerability to interpersonal victimization. In addition to these factors is the traumatic nature of experiencing psychotic symptoms and coercive treatments such as involuntary hospitalization and being placed in seclusion or restraints. Not surprisingly, these high rates of trauma lead to high rates of PTSD in people with psychotic disorders, which are associated with more severe symptoms, worse functioning, and greater use of acute care services. In addition to the impact of trauma on the development of psychotic disorders and comorbid PTSD, traumatic experiences such as childhood sexual and physical abuse can shape the nature of prominent psychotic symptoms such as the content of auditory hallucinations and delusional beliefs. Additionally, traumatic experiences have been implicated in the role of ‘stress responsivity’ and increased risk for transition to psychosis in those identified as being at clinical high risk of developing psychosis. Finally, although the diagnostic criteria for PTSD primarily emphasize the effects of trauma on anxiety, avoidance, physiological over-arousal, and negative thoughts, it is well established that PTSD is frequently accompanied by psychotic symptoms such as hallucinations and delusions that cannot be attributed to another DSM-V Axis I disorder such as psychotic depression or schizophrenia. Understanding the contribution of traumatic experiences to the etiology of psychosis and other symptoms can inform the provision of cognitive behavioral therapy for psychosis, including the development of a shared formulation of the events leading up to the onset of the disorder, as well as other trauma-informed treatments that address distressing and disabling symptoms associated with trauma and psychosis. Until recently the trauma treatment needs of this population have been neglected, despite the high rates of trauma and PTSD in persons with psychotic disorders, and in spite of substantial gains made in the treatment of PTSD in the general population. Fortunately, progress in recent years has provided encouraging evidence that PTSD can be effectively treated in people with psychotic disorders using interventions adapted from PTSD treatments developed for the general population. In contrast to clinician fears about the untoward effects of trauma-focused treatments on persons with a psychotic disorder, research indicates that post-traumatic disorders can be safely treated, and that participants frequently experience symptom relief and improved functioning. There is a need to develop a better understanding of the interface between trauma, psychosis, and post-traumatic disorder. This Frontiers Research Topic is devoted to research addressing this interface.
    Keywords: R5-920 ; RC435-571 ; BF1-990 ; Q1-390 ; Psychosis ; PTSD ; Auditory Hallucinations ; Negative Symptoms ; Childhood Trauma ; Trauma ; Psychological Interventions ; Lived Experience ; bic Book Industry Communication::M Medicine
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-12-21
    Description: Early studies recognized the unique phenotype and attributes of T cells found in mucosal tissues, such as the intestines, skin, lung and female reproductive tract. This special topic issue will cover many aspects of mucosal-resident T cell biology during infection and disease and is dedicated to Leo Lefrancois, a pioneer in this field who recently passed away. A major proportion of these mucosal T cells are memory T cells, now recognized as a major constituent of memory T cells referred to as tissue-resident memory T cells. Unlike central and effector memory T cell subsets, tissue-resident memory T cells exhibit tissue specificity with minimal systemic migration. Nonetheless, tissue-resident memory T cells share a similar origin and display some overlapping phenotypes with their other memory T cell counterparts. Articles in this issue will describe the different types of memory T cells residing in mucosal tissues, their origins and functions as well as how they vary among discrete mucosal sites. Manuscripts will consider the unique physiological environments and cellular constituents which facilitate tissue residency while preserving tissue function. Additionally, there will be descriptions of the various mechanisms responsible for the migration and segregation of tissue resident memory CD8 T cells from the peripheral T cell pool. Although the mechanisms facilitating the sequestration of tissue-resident memory T cells within a respective tissue has not well characterized, various theories will also be discussed. Lastly, how these T cells contribute to immunity to pathogens, cancer, and autoimmunity and could be modified through vaccination or therapeutic intervention will be described. As mucosal tissues are the major portals of pathogen entry and frequent transformation, the activities and persistence of tissue resident memory T cells is crucial for mediating protection at these sites.
    Keywords: R5-920 ; RC581-607 ; pathogens ; Microscopy ; Migration ; Mucosa ; T cell differentiation ; Vaccination ; Inflammation ; Epithelium ; CD103 ; bic Book Industry Communication::M Medicine
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    MDPI - Multidisciplinary Digital Publishing Institute
    Publication Date: 2023-12-21
    Description: This Special Issue Book ""Anti-Photoagaing and Photo-Protective Compounds from Marine Organisms"" is aimed at collecting literature on the below-mentioned keyword topics, which can significantly increase our basic understanding of marine-derived compounds in cosmeceutical product development and increases the value of marine products at the industrial level.
    Keywords: R5-920 ; RM1-950 ; UV-absorbing compound ; lifespan ; oligosaccharides ; mast cells ; AP-1 ; antioxidant activity ; phlorotannin ; pH-thermo stability ; microalgae ; Hizikia fusiforme ; skin-aging ; MAPKs ; bioactive ; Fucofuroeckol-A ; carbohydrates ; antioxidant ; mitochondrial function ; natural ; photoprotection ; anti-inflammation ; keratinocytes ; heme oxygenase-1 ; fucoidan ; marine algae ; Biological Effective Protection Factors (BEPFs) ; 9-cis-?-carotene ; MMP ; radical scavenging activity ; Ecklonia stolonifera ; nuclear factor erythroid 2-related factor 2 ; Drosophila melanogaster ; anti-allergy ; miiuy croaker (Miichthys miiuy) ; UVB ; sunscreen ; mobility ; cosmeceuticals ; collagen hydrolysates ; mycosporine-2-glycine ; scale ; cosmetics ; anti-aging ; anti-protein-glycation activity ; pepsin-soluble collagen (PSC) ; inflammation ; sulfated polysaccharides ; UV- mediated action spectra ; skin health ; anti-oxidation ; ageing ; substances ; low molecular-weight ; cytoprotection ; MMPs ; 5-dihydroxybenzaldehyde ; acid-soluble collagen (ASC) ; marine collagen peptide ; Dunaliella salina ; NF-?B ; mycosporine-like amino acids ; photoprotective ; monosaccharides ; degranulation ; ultraviolet-B ; 3-bromo-4 ; bic Book Industry Communication::M Medicine
    Language: English
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    MDPI - Multidisciplinary Digital Publishing Institute
    Publication Date: 2024-04-11
    Description: The rapid growth of global energy consumption and simultaneous waste discharge requires more sustainable energy production and waste disposal/recovery technology. In this respect, microbial fuel cell and bioelectrochemical systems have been highlighted to provide a platform for waste-to-energy and cost-efficient treatment. Microbial fuel cell technology has also contributed to both academia and industry through the development of breakthrough sustainable technologies, enabling cross- and multi-disciplinary approaches in microbiology, biotechnology, electrochemistry, and bioprocess engineering. To further spread these technologies and to help the implementation of microbial fuel cells, this Special Issue, entitled “Microbial Fuel Cells 2018”, was proposed for the international journal Energies. This Special Issue mainly covers original research and studies related to the above-mentioned topic, including, but not limited to, bioelectricity generation, microbial electrochemistry, useful resource recovery, system and process design, and the implementation of microbial fuel cells.
    Keywords: TA1-2040 ; T1-995 ; TA170-171 ; biogenic conversion ; power density ; treatment efficiency ; microbial fuel cell (MFC) ; flow rate ; hydrogen production ; bioelectrochemical system ; C1 gas ; acetate ; bioelectrochemical reactor ; TiO2 nanotube ; environmental engineering ; lignite ; dye decolorization ; electrodialysis ; Ni–Co alloy ; dilution rate ; substrate supply rate ; carbon monoxide ; inhibition ; microbial fuel cell ; acetosyringone ; anodic volume ; microbial electrolysis cell ; syringaldehyde ; laccase ; methane ; anode distance ; coal ; power generation ; yeast wastewater ; cathode ; renewable energy source ; natural redox mediators ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TB Technology: general issues::TBX History of engineering and technology
    Language: English
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    MDPI - Multidisciplinary Digital Publishing Institute
    Publication Date: 2022-01-31
    Description: Micro-total analysis systems and lab-on-a-chip platforms are widely used for sample preparation and analysis, drug delivery, and biological and chemical syntheses. A micromixer is an important component in these applications. Rapid and efficient mixing is a challenging task in the design and development of micromixers. The flow in micromixers is laminar, and, thus, the mixing is primarily dominated by diffusion. Recently, diverse techniques have been developed to promote mixing by enlarging the interfacial area between the fluids or by increasing the residential time of fluids in the micromixer. Based on their mixing mechanism, micromixers are classified into two types: active and passive. Passive micromixers are easy to fabricate and generally use geometry modification to cause chaotic advection or lamination to promote the mixing of the fluid samples, unlike active micromixers, which use moving parts or some external agitation/energy for the mixing. Many researchers have studied various geometries to design efficient passive micromixers. Recently, numerical optimization techniques based on computational fluid dynamic analysis have been proven to be efficient tools in the design of micromixers. The current Special Issue covers new mechanisms, design, numerical and/or experimental mixing analysis, and design optimization of various passive micromixers.
    Keywords: TP1-1185 ; T1-995 ; micromixer design ; passive micromixer ; design optimization ; mixing mechanism ; analysis of mixing
    Language: English
    Format: image/png
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    MDPI - Multidisciplinary Digital Publishing Institute
    Publication Date: 2024-04-11
    Description: Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective.
    Keywords: TA1-2040 ; T1-995 ; similarity measure ; swarm-robotics ; drag-based system ; PID algorithm ; human–robot interaction ; behaviour dynamics ; state constraints ; fair optimisation ; micro mobile robot ; robot ; actuators ; high-gain observer ; turning model LIP ; space robot ; manipulation action sequences ; subgoal graphs ; remotely operated vehicle ; constrained motion ; joint limit avoidance ; curvilinear obstacle ; rehabilitation system ; stability criterion ; system design ; quad-tilt rotor ; iterative learning ; spiral curve ; cable detection ; SEA ; douglas–peuker polygonal approximation ; predictable trajectory planning ; ATEX ; obstacle avoidance system ; kinematic singularity ; collision avoidance ; biologically-inspired ; jumping robot ; differential wheeled robot ; design and modeling ; control efficacy ; robotics ; extremum-seeking ; object-oriented ; non-holonomic mobile robot ; magneto-rheological fluids ; rendezvous consensus ; altitude controller ; master-slave ; switching control ; deep reinforcement learning ; mechanism ; expansion logic strategy ; negative buoyancy ; action generation ; radial basis function neural networks ; unmanned aerial vehicles ; extend procedure ; glass façade cleaning robot ; convolutional neural network ; climbing robot ; micro air vehicle ; car-like kinematics ; variable speed ; machine learning ; dynamical model ; transportation ; geodesic ; unmanned surface vessel ; medical devices ; stopper ; extended state observer (ESO) ; high efficiency ; object mapping ; multi-objective optimization ; hybrid robot ; robot learning ; auto-tuning ; cable disturbance modeling ; manipulation planning ; pesticide application ; high-speed target ; sparse pose adjustment (SPA) ; service robot ; lumped parameter method ; Geometric Algebra ; dynamic coupling analysis ; Thau observer ; tri-tilt-rotor ; industrial robotic manipulator ; hardware-in-the-loop simulation ; robotic drilling ; muscle activities ; small size ; chameleon ; continuous hopping ; wall climbing robot ; hover mode ; 3D-SLAM ; curvature constraints ; PSO ; drilling end-effector ; Rodrigues parameters ; gait adaptation ; static environments ; position/force cooperative control ; snake-like robot ; shape-fitting ; powered exoskeleton ; input saturation ; kinematic identification ; methane ; human–machine interactive navigation ; q-learning ; path following ; hopping robot ; mobile manipulation ; high step-up ratio ; actuatorless ; monocular vision ; stability analysis ; compact driving unit ; snake robot ; non-holonomic robot ; curvature constraint ; phase-shifting ; dialytic elimination ; gesture recognition ; snake robots ; series elastic actuator ; flapping ; servo valve ; motion camouflage control ; biomimetic robot ; minimally invasive surgery robot ; centralized architecture ; trajectory planning ; computing time ; adaptive control law ; kinematics ; facial and gender recognition ; single actuator ; victim-detection ; shape memory alloys ; undiscovered sensor values ; discomfort ; Differential Evolution ; numerical evaluation ; quadruped robot ; coverage path planning ; localization ; MPC ; n/a ; fault diagnosis ; neural networks ; disturbance-rejection control ; sample gathering problem ; cart ; bio-inspired robot ; opposite angle-based exact cell decomposition ; optimization ; safety ; goal exchange ; hierarchical planning ; ocean current ; robot motion ; nonlinear differentiator ; mapping ; finite-time currents observer ; Newton iteration ; inverse kinematics ; deposition uniformity ; spatial pyramid pooling ; hierarchical path planning ; end effector ; head-raising ; fault recovery ; LOS ; path tracking ; non-inertial reference frame ; step climbing ; obstacle avoidance ; sliding mode control ; symmetrical adaptive variable impedance ; lane change ; quadcopter UAV ; singularity analysis ; biped mechanism ; fault-tolerant control ; dynamic neural networks ; mobile robots ; data association ; UAV ; enemy avoidance ; reinforcement learning ; grip optimization ; safety recovery mechanism ; exoskeleton ; dynamic environment ; uncertain environments ; hybrid bionic robot ; potential field ; robot navigation ; cleaning robot ; unmanned aerial vehicle ; non-singular fast-terminal sliding-mode control ; contact planning ; Lyapunov-like function ; piezoelectric actuator ; transition mode ; non-prehensile manipulation ; multiple mobile robots ; Tetris-inspired ; real-time action recognition ; integral line-of-sight ; topological map ; alpine ski ; target tracking ; closed-loop detection ; working efficiency ; mathematical modeling ; curve fitting ; force control ; biped robots ; NSGA-II ; mobile robot ; load carriage ; prescription map translation ; artificial fish swarm algorithm ; Q-networks ; self-reconfigurable robot ; G3-continuity ; autonomous vehicle ; loop closure detection ; excellent driver model ; robots ; graph representation ; regional growth ; target assignment ; evolutionary operators ; intelligent mobile robot ; motion sensor ; exploration ; droplets penetrability ; dynamic uncertainty ; simultaneous localization and mapping (SLAM) ; area decomposition ; multi-criteria decision making ; 4WS4WD vehicle ; biped climbing robots ; skiing robot ; ROS ; decision making ; smart materials ; centrifugal force ; missile control system ; formation of robots ; electro-rheological fluids ; pneumatics ; variable spray ; inertial measurement unit (IMU) ; Robot Operating System ; trajectory interpolation ; formation control ; immersion and invariance ; dragonfly ; parallel navigation ; harmonic potential field ; pallet transportation ; mobile robot navigation ; negative-buoyancy ; grip planning ; manipulator ; position control ; external disturbance ; legged robot ; passive skiing turn ; autonomous underwater vehicle (AUV) ; gait cycle ; path planning ; sliding mode observer ; dynamic gait ; self-learning ; polyomino tiling theory ; coalmine ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TB Technology: general issues::TBX History of engineering and technology
    Language: English
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-09
    Description: The most commonly used measurement technique for electrophysiology is the patch clamp technique. While this measurement technique allows the precise investigation of the communication taking place through ion channels, it has some undesirable drawbacks such as the local destruction of the plasma membrane, a low success rate and an elaborate experimental procedure. To avoid these drawbacks, in this work a new non-invasive microfluidic platform for electrophysiological research (NIMEP) was developed with regard to the activity of ion channels. This novel approach is based on the non-invasive measurement of the total current through the cell membrane and provides a possibility for an automated investigation of the individual cells. In addition, the investigated cell can be used for other applications, since the cell remains in an intact state before and after the test.
    Keywords: T1-995 ; Nicht-invasiv ; Mikrofluidik ; Non-invasive ; Patch clamp technique ; Ionenkanal ; Electrophysiology ; Elektrophysiologie ; Ion channel ; Patch-Clamp-Technik ; Microfluidics ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TB Technology: general issues
    Language: German
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-12-21
    Description: The term allorecognition refers to the series of mechanisms used by an individual’s immune system to distinguish its own cells and tissues from those of another individual belonging to the same species. During evolution, different cells and molecules of both innate and adaptive immune systems have been selected to recognize and respond to antigens expressed by allogeneic cells, but not autologous cells (alloantigens). This research topic focuses on allorecognition by lymphocytes of the adaptive immune system and its involvement in rejection or tolerance of allogeneic transplants. T and B cells recognizing alloantigens via specific receptors become activated and undergo proliferation and differentiation into different types of effector and memory cells. Allorecognition by lymphocytes occurs regularly during pregnancy upon trafficking of both maternal and fetal cells. In this setting, allorecognition triggers an alloresponse that is protective towards the fetus thus preventing abortion. Protective alloimmunity is mediated through cooperation between different lymphocytes and antigen presenting cells (APCs), as well as regulatory mediators and receptors. Likewise, certain transplants placed in organs and tissues called immune-privileged sites such as the eye, the central nervous system and the testis elicit protective rather than destructive adaptive immune responses. Therefore, under certain circumstances, allorecognition by regulatory lymphocytes (Tregs and Bregs) can lead to tolerance of alloantigens. In contrast, allorecognition by T cells in non-immune privileged sites and under inflammatory conditions leads to a destructive immune response. Indeed, after transplantation of most allogeneic organs and tissues, activation of pro-inflammatory T cells (TH1 and TH17), which recognize donor MHC proteins (direct pathway) or peptides derived from donor MHC and minor antigens (indirect pathway), leads to graft rejection. This inflammatory response leads to the differentiation of allospecific cytotoxic T cells as well as production of donor specific antibodies by B cells, both of which contribute to the destruction of the transplant. In this Research Topic, we describe the different pathways of allorecognition by T cells involved in allograft rejection, as well as the role of different antigen presenting cells and graft-derived microvesicles (exosomes) involved in this process. Another aspect of this Research Topic addresses the essential role of alloreactive memory T cells in allograft rejection and resistance to transplant tolerance induction in laboratory rodents, as well as non-human primates and patients. Indeed, it has become evident that laboratory mice display very few memory alloreactive T cells pre-transplantation, essentially due to the fact that they are raised in pathogen-free facilities. In contrast, primates display high frequencies of alloreactive memory T cells, either generated through prior exposure to allogeneic MHC molecules or via cross-reactivity with microbial antigens. We and others have provided ample evidence showing that this feature accounts for differences in terms of tolerance susceptibility between laboratory rodents and patients. This implies that further investigation of tolerance protocols in laboratory mice should be performed using “dirty mice” i.e., mice raised in non-sterile conditions. In summary, this Research Topic addresses key aspects of allorecognition by lymphocytes and alloantigen presentation by dendritic cells, and specifically how these processes shape our immune system and govern the rejection or tolerance of allogeneic tissues and organs.
    Keywords: R5-920 ; RC581-607 ; lymphocytes ; dendritic cells ; transplantation ; Allorecognition ; antibodies ; transplant rejection ; transplant tolerance ; immune privilege ; alloantigens ; bic Book Industry Communication::M Medicine
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...