ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 21 (1996), S. 264-270 
    ISSN: 1432-0789
    Keywords: Subsoil acidity ; Ca fulvates ; Surface application ; Organic materials
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Subsoil acidity is a serious constraint to crop production, and is difficult to correct by conventional liming practices. Thus, a different approach to ameliorating acid subsoils was evaluated. Subsoil material of an acid Ultisol (pH 4.4) was packed into 50-cm long columns, then leached with solutions of CaCl2, CaCO3 (suspension) or Ca fulvates prepared from chicken manure, cowpea green manure, or sewage sludge. The total water applied was 30.26 cm (or 800 ml) in 2 days. Thereafter, the columns were dismantled and cut into 5-cm segments for chemical analysis. The results indicated that only 2% of the added Ca from CaCO3 moved past the 15-cm depth, compared to 68% from CaCl2 and 35–75% from Ca fulvates. Correspondingly, CaCO3 precipitated all KCl-extractable Al in the top 5 cm, but had no effect beyond the 10-cm depth. The CaCl2 displaced a small but significant portion of extractable Al from the top 15 cm and redeposited some of that Al in lower depths. Similar to CaCO3, Ca fulvates from chicken manure and green mamure only decreased extractable Al significantly in the top 10-cm layers, but had little effect beyond that depth. By contrast, the Ca fulvate from sewage sludge decreased Al down to the 45-cm depth. In terms of reducing Al saturation as a percentage of total extractable cations (effective cation exchange capacity), the Ca fulvates were as effective as CaCO3 in the 0-to 5-cm layer, and more effective than CaCl2 in any soil layer because of the increased exchangeable Ca and/or decreased Al. In general, surface application of common organic material-derived Ca fulvates can increase subsoil Ca and decrease the Al saturation percentage. However, Mg depletion and enrichment of unwanted metals (e.g., Na or heavy metals) may be a problem when leaching with these organic sources.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...