ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of geodesy 72 (1998), S. 323-332 
    ISSN: 1432-1394
    Keywords: Key words. Strapdown inertial scalar gravimetry (SISG) ; Rotation invariant scalar gravimetry (RISG) ; Strapdown inertial navigation system INS ; Differetial GPS ; Digital filter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying
    Notes: Abstract. In June 1995, a flight test was carried out over the Rocky Mountains to assess the accuracy of airborne gravity for geoid determination. The gravity system consisted of a strapdown inertial navigation system (INS), two GPS receivers with zero baseline on the airplane and multiple GPS master stations on the ground, and a data logging system. To the best of our knowledge, this was the first time that a strapdown INS has been used for airborne gravimetry. The test was designed to assess repeatability as well as accuracy of airborne gravimetry in a highly variable gravity field. An east-west profile of 250 km across the Rocky Mountains was chosen and four flights over the same ground track were made. The flying altitude was about 5.5km, i.e., between 2.5 and 5.0km above ground, and the average flying speed was about 430km/h. This corresponds to a spatial resolution (half wavelength of cutoff frequency) of 5.07.0km when using filter lengths between 90 and 120s. This resolution is sufficient for geoid determination, but may not satisfy other applications of airborne gravimetry. The evaluation of the internal and external accuracy is based on repeated flights and comparison with upward continued ground gravity using a detailed terrain model. Gravity results from repeated flight lines show that the standard deviation between flights is about 2mGal for a single profile and a filter length of 120s, and about 3mGal for a filter length of 90s. The standard deviation of the difference between airborne gravity upward continued ground gravity is about 3mGal for both filter lengths. A critical discussion of these results and how they relate to the different transfer functions applied, is given in the paper. Two different mathematical approaches to airborne scalar gravimetry are applied and compared, namely strapdown inertial scalar gravimetry (SISG) and rotation invariant scalar gravimetry (RISG). Results show a significantly better performance of the SISG approach for a strapdown INS of this accuracy class. Because of major differences in the error model of the two approaches, the RISG method can be used as an effective reliability check of the SISG method. A spectral analysis of the residual errors of the flight profiles indicates that a relative geoid accuracy of 23cm over distances of 200km (0.1 ppm) can be achieved by this method. Since these results present a first data analysis, it is expected that further improvements are possible as more refined modelling is applied.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-11-04
    Description: The Luoshan Fault located at the northeastern margin of Tibet plateau strikes roughly N-S, and is composed of six left-stepping sections with a total length of 60 km. Much evidence suggests that the Luoshan Fault is a reverse right-lateral strike-slip fault. The largest right-lateral strike-slip displacement and the most abundant dextral offset phenomena are located along the central section. Based on the right-lateral strike-slip offsets of the oldest alluvial fan, and of a gully and on the average displacement of the same order of gullies, the minimum slip-rate has been 2.15 ± 0.2 mm/yr since Late Pleistocene. Many surface rupture phenomena, such as fault scarps with fresh free-face, ground fissures, displacements of very young gullies, imply that a recent earthquake occurred along this fault. Combining the historical catalogue and our results, we believe that the 1561 A.D. earthquake was produced by the Luoshan Fault. Three paleoearthquakes were determined by means of paleoseismic studies along the Luoshan Fault: they occurred after 8200 ± 600 years BP, between 3130 ± 240 years BP and 4150 ± ± 120 years C.BP, and before 2230 ± 170 years BP, respectively.
    Description: Published
    Description: JCR Journal
    Description: open
    Keywords: northeastern margin of Tibet plateau ; paleoseismology ; slip-rate ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1084608 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...