ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0219-1032
    Keywords: Mutually Primed Synthesis ; Random Saturation Mutagenesis ; Spiked Degenerate Oligonucleotide (Oligo)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The yeast transcriptional activator protein, Gen4p from Saccharomyces cerevisiae binds to the specific sequence in the promoters of many amino acid biosynthetic genes for general control. A new random saturation mutagenesis method was developed to isolate Gen4p derivatives with only one or two mutations in the DNA binding domain without using radioactive isotope. This will be used to identify the amino acids of Gen4p involved in protein-protein interactions. Saturation mutagenesis in the DNA binding domain of Gen4p was performed using spiked degenerate oligonucleotides containing randomized codon bases designed specifically for only one or two base changes in the mutagenized area. These oligonucleotides were synthesized to have two flanking restriction enzyme sites for cloning to the appropriate vector. The 3′ ends were mutually primed after hybridization via the palindromic sequences of the restriction enzyme sites. These molecules were then converted to double stranded DNA upon treatment with DNA polymerase. Here, a library collection of 100,680 in an altered Gen4p pool was generated by cloning a mixed-base oligonucleotide in the place of the sequence coding for the DNA binding domains. The quality of the library was examined by DNA sequencing and found to be in good agreement with the expected statistical values. Calculated mutation frequency was 66% of mutant nucleotide rate and actual sequencing data revealed 68% mutant nucleotide rates from the sequenced library. Thus, among 21 mutants, 16 had one point mutantions and 5 had two point mutations. This approach appears to be an effective and general tool for creating proteins with one or two amino acid change(s) in their molecules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...