ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Sperm competition  (1)
  • fighting  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of mathematical biology 39 (1999), S. 91-108 
    ISSN: 1432-1416
    Keywords: Key words: Evolutionarily stable strategies ; Game theory ; Sperm competition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Mathematics
    Notes: Abstract.  In principle there are two approaches to modelling a trade-off between the positive and negative outcomes of a behavior: after suitably defining a value for the behavior in the absence of any trade-off, one can either multiply that value by an appropriate discount or subtract an appropriate cost. In a prospective analysis of sperm competition, Parker (Proc. Roy. Soc. Lond. B (1990) 242, 120–126) adopted the multiplicative approach to model the trade-off between the value of a mating and the cost of its acquisition. He obtained two paradoxical results. First, if two males ‘know’ whether they are first or second to mate, but these roles are assigned randomly, then sperm numbers should be the same for both males whether the ‘raffle’ for fertilization is fair or unfair. Second, if mating order is constant, then a favored male should expend less on sperm. His results are puzzling not only in terms of intuition about nature, but also in terms of his model’s consistency. In other words, they present both an external and an internal paradox. Parker assumed the fairness of the raffle to a disfavored male to be independent of how much sperm a favored male deposits. This article both generalizes Parker’s analysis by allowing fairness to decrease with sperm expenditure by the favored male and compares Parker’s results to those obtained by the additive approach. In many respects, results are similar. Nevertheless, if the costs of mating are assumed to increase with sperm expenditure but not to depend on the role in which sperm is expended, as Parker assumed, then the additive approach is more fundamentally correct. In particular, Parker’s constant-role paradox is an artifact of his approach. His random-role paradox is internally rationalized in terms of standard microeconomic theory. When fairness decreases, however slightly, with sperm expenditure by the favored male, both models demonstrate that the evolutionarily stable strategy is for more sperm to be deposited during a favored mating than during a disfavored mating. The lower the costs, the greater the divergence. Thus a possible resolution of the external paradox is that fairness is not constant in nature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Evolutionary ecology 6 (1992), S. 198-222 
    ISSN: 1573-8477
    Keywords: ESS ; game theory ; fighting ; spiders
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary This paper develops a mathematical model of an iterated, asymmetric Hawk-Dove game with the novel feature that not only are successive pairs of interactants — in the roles of owner and intruder contesting a site — drawn randomly from the population, but also the behaviour adopted at one interaction affects the role of a contestant in the next. Under the assumption that a site is essential for reproduction, the evolutionarily stable strategy (ESS) of the population is found to depend on the probability, w, that the game will continue for at least a further period (which is inversely related to predation risk), and five other parameters; two of them are measures of site scarcity, two are measures of fighting costs, and the last is a measure of resource holding potential (RHP). Among the four strategies — Hawk (H), Dove (D), Bourgeois (B) and anti-Bourgeois (X) — only D is incapable of being an ESS; and regions of parameter space are found in which the ESS can be only H, or only X, or only B; or either H or X; or either X or B; or either H or B; or any of the three. The scarcer the sites or the lower the costs of fighting, or the lower the value of w, the more likely it is that H is an ESS; the more abundant the sites or the higher the costs of fighting, or the higher the value of w, the more likely it is that X or B is an ESS. The different ESSs are interpreted as different ecotypes. The analysis suggests how a non-fighting population could evolve from a fighting population under decreasing risk of predation. If there were no RHP, or if RHP were low, then the ESS in the non-fighting population would be X; only if RHP were sufficiently high would the ESS be B, and the scarcer the sites, the higher the RHP would have to be. These conclusions support the thesis that if long-term territories are essential for reproduction and sites are scarce, then ownership is ruled out not only as an uncorrelated asymmetry for settling disputes in favour of owner, but also as a correlated asymmetry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...