ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-12
    Description: The Sample Analysis at Mars (SAM) instrument will analyze Martian samples collected by the Mars Science Laboratory Rover with a suite of spectrometers. This paper discusses the driving requirements, design, and lessons learned in the development of the Sample Manipulation System (SMS) within SAM. The SMS stores and manipulates 74 sample cups to be used for solid sample pyrolysis experiments. Focus is given to the unique mechanism architecture developed to deliver a high packing density of sample cups in a reliable, fault tolerant manner while minimizing system mass and control complexity. Lessons learned are presented on contamination control, launch restraint mechanisms for fragile sample cups, and mechanism test data.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 39th Aerospace Mechanisms Symposium; 303-316; NASA/CP-2008-215252
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: A viewgraph presentation describing the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) mission is shown. The topics include: 1) Context: community planning and study status; 2) Science goals; 3) Mission requirements; 4) Mission concepts for SPIRIT and SPECS; and 5) Tethered formation flying, a key enabling technology.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Proceedings from the 2nd International Symposium on Formation Flying Missions and Technologies; NASA/CP-2005-212781
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: For three decades, magnetospheric field and plasma measurements have been made by diverse instruments flown on spacecraft in many different orbits, widely separated in space and time, and under various solar and magnetospheric conditions. Scientists have used this information to piece together an intricate, yet incomplete view of the magnetosphere. A simultaneous global view, using various light wavelengths and energetic neutral atoms, could reveal exciting new data and help explain complex magnetospheric processes, thus providing us with a clear picture of this region of space. The George C. Marshall Space Flight Center (MSFC) is responsible for defining the Magnetosphere Imager mission which will study this region of space. A core instrument complement of three imagers (with the potential addition of one or more mission enhancing instrument) will fly in an elliptical polar Earth orbit with an apogee of 44,600 kilometers and a perigee of 4,800 km. This report will address the mission objectives, spacecraft design concepts, and the results of the MSFC concept definition study.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA-RP-1401 , NAS 1.61:1401 , M-832
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: Currently two gravity field satellite missions, CHAMP and GRACE, are equipped with high sensitivity electrostatic accelerometers, measuring the non-conservative forces acting on the spacecraft in three orthogonal directions. During the gravity field recovery these measurements help to separate gravitational and non-gravitational contributions in the observed orbit perturbations. For precise orbit determination purposes all these missions have a dual-frequency GPS receiver on board. The reduced dynamic technique combines the dense and accurate GPS observations with physical models of the forces acting on the spacecraft, complemented by empirical accelerations, which are stochastic parameters adjusted in the orbit determination process. When the spacecraft carries an accelerometer, these measured accelerations can be used to replace the models of the non-conservative forces, such as air drag and solar radiation pressure. This approach is implemented in a batch least-squares estimator of the GPS High Precision Orbit Determination Software Tools (GHOST), developed at DLR/GSOC and DEOS. It is extensively tested with data of the CHAMP and GRACE satellites. As accelerometer observations typically can be affected by an unknown scale factor and bias in each measurement direction, they require calibration during processing. Therefore the estimated state vector is augmented with six parameters: a scale and bias factor for the three axes. In order to converge efficiently to a good solution, reasonable a priori values for the bias factor are necessary. These are calculated by combining the mean value of the accelerometer observations with the mean value of the non-conservative force models and empirical accelerations, estimated when using these models. When replacing the non-conservative force models with accelerometer observations and still estimating empirical accelerations, a good orbit precision is achieved. 100 days of GRACE B data processing results in a mean orbit fit of a few centimeters with respect to high-quality JPL reference orbits. This shows a slightly better consistency compared to the case when using force models. A purely dynamic orbit, without estimating empirical accelerations thus only adjusting six state parameters and the bias and scale factors, gives an orbit fit for the GRACE B test case below the decimeter level. The in orbit calibrated accelerometer observations can be used to validate the modelled accelerations and estimated empirical accelerations computed with the GHOST tools. In along track direction they show the best resemblance, with a mean correlation coefficient of 93% for the same period. In radial and normal direction the correlation is smaller. During days of high solar activity the benefit of using accelerometer observations is clearly visible. The observations during these days show fluctuations which the modelled and empirical accelerations can not follow.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Proceedings of the 20th International Symposium on Space Flight Dynamics; NASA/CP-2007-214158
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: The Space Communications and Navigation, Constellation Integration Project (SCIP) is tasked with defining, developing, deploying and operating an evolving multi-decade communications and navigation (C/N) infrastructure including services and subsystems that will support both robotic and human exploration activities at the Moon. This paper discusses an early far side gravitational mapping service and related telecom subsystem that uses an existing spacecraft (WIND) and the Lunar Reconnaissance Orbiter (LRO) to collect data that would address several needs of the SCIP. An important aspect of such an endeavor is to vastly improve the current lunar gravity model while demonstrating the navigation and stationkeeping of a relay spacecraft. We describe a gravity data acquisition activity and the trajectory design of the relay orbit in an Earth-Moon L2 co-linear libration orbit. Several phases of the transfer from an Earth-Sun to the Earth-Moon region are discussed along with transfers within the Earth-Moon system. We describe a proposed, but not integrated, add-on to LRO scheduled to be launched in October of 2008. LRO provided a real host spacecraft against which we designed the science payload and mission activities. From a strategic standpoint, LRO was a very exciting first flight opportunity for gravity science data collection. Gravity Science data collection requires the use of one or more low altitude lunar polar orbiters. Variations in the lunar gravity field will cause measurable variations in the orbit of a low altitude lunar orbiter. The primary means to capture these induced motions is to monitor the Doppler shift of a radio signal to or from the low altitude spacecraft, given that the signal is referenced to a stable frequency reference. For the lunar far side, a secondary orbiting radio signal platform is required. We provide an in-depth look at link margins, trajectory design, and hardware implications. Our approach posed minimum risk to a host mission while maintaining a very low implementation and operations cost.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Proceedings of the 20th International Symposium on Space Flight Dynamics; NASA/CP-2007-214158
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: Cracks were found on bellows flow liners in the liquid hydrogen feedlines of several space shuttle orbiters in 2002. An effort to characterize the fluid environment upstream of the space shuttle main engine low-pressure fuel pump was undertaken to help identify the cause of the cracks and also provide quantitative environments and loads of the region. Part of this effort was to determine the duct acoustics several inches upstream of the low-pressure fuel pump in the region of a bellows joint. A finite element model of the complicated geometry was made using three-dimensional fluid elements. The model was used to describe acoustics in the complex geometry and played an important role in the investigation. Acoustic mode shapes and natural frequencies of the liquid hydrogen in the duct and in the cavity behind the flow liner were determined. Forced response results were generated also by applying an edgetone-like forcing to the liner slots. Studies were conducted for state conditions and also conditions assuming two-phase entrapment in the backing cavity. Highly instrumented single-engine hot fire data confirms the presence of some of the predicted acoustic modes.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jul 11, 2004 - Jul 14, 2004; Fort Lauderdale, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: A NASA team of engineers has been organized to design a crew return vehicle for returning International Space Station crew members from orbit. The hypersonic characteristics of this X-23/X-2&4 derived crew return vehicle (designated X-38) are being evaluated in various wind tunnels in support of this effort. Aerodynamic data has been acquired in three NASA hypersonic facilities at Mach 20, and Mach 6. Computational Fluid Dynamics tools have been applied at the appropriate wind tunnel conditions to make comparisons with portions of this data. Experimental data from the Mach 6 Air and CF4 facilities illustrate a net positive pitching moment increment due to density ratio, as well as increased elevon effectiveness. Chemical nonequilibrium computational fluid dynamics solutions at flight conditions reinforce this conclusion.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA Paper 97-0567 , 35th Aerospace Sciences Meeting and Exhibit; Jan 06, 1997 - Jan 10, 1997; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: As part of the Sustaining Engineering program for the International Space Station (ISS), a ground simulator of the Internal Thermal Control System (ITCS) in the Lab Module was designed and built at the Marshall Space Flight Center (MSFC). To support prediction and troubleshooting, this facility is operationally and functionally similar to the flight system and flight-like components were used when available. Flight software algorithms, implemented using the LabVIEW(Registered Trademark) programming language, were used for monitoring performance and controlling operation. Validation testing of the low temperature loop was completed prior to activation of the Lab module in 2001. Assembly of the moderate temperature loop was completed in 2002 and validated in 2003. The facility has been used to address flight issues with the ITCS, successfully demonstrating the ability to add silver biocide and to adjust the pH of the coolant. Upon validation of the entire facility, it will be capable not only of checking procedures, but also of evaluating payload timelining, operational modifications, physical modifications, and other aspects affecting the thermal control system.
    Keywords: Spacecraft Design, Testing and Performance
    Type: SAE-2003-01-2519 , 33rd International Conference on Environmental Systems; Jul 07, 2003 - Jul 10, 2003; Vancouver, British Columbia; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: NASA established the Small Explorer (SNMX) program in 1988 to provide frequent opportunities for highly focused and relatively inexpensive space science missions. The SMEX program has produced five satellites, three of which have been successfully launched. The remaining two spacecraft are scheduled for launch within the coming year. NASA has recently developed a prototype for the next generation Small Explorer spacecraft (SMEX-Lite). This paper describes the object-oriented design (OOD) of the SMEX-Lite Attitude Control System (ACS) software. The SMEX-Lite ACS is three-axis controlled and is capable of performing sub-arc-minute pointing. This paper first describes high level requirements governing the SMEX-Lite ACS software architecture. Next, the context in which the software resides is explained. The paper describes the principles of encapsulation, inheritance, and polymorphism with respect to the implementation of an ACS software system. This paper will also discuss the design of several ACS software components. Specifically, object-oriented designs are presented for sensor data processing, attitude determination, attitude control, and failure detection. Finally, this paper will address the establishment of the ACS Foundation Class (AFC) Library. The AFC is a large software repository, requiring a minimal amount of code modifications to produce ACS software for future projects.
    Keywords: Spacecraft Design, Testing and Performance
    Type: SSC98-I-7 , Small Satellites; Aug 31, 1998; Logon, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The Mars Science Laboratory (MSL) Multi-Mission Radioisotope Thermoelectric Generator, or MMRTG, was developed by the Department Of Energy to a set of requirements from multiple NASA mission concepts. Those concepts included deep space missions to the outer planets as well as missions to Mars. The synthesis of that diverse set of requirements addressed functional as well as environmental requirements.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Nuclear and Emerging Technologies for Space 2013 (NETS 2013); Feb 25, 2013 - Feb 28, 2013; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...