ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: Minimizing astronaut's short and long-term medical risks arising from exposure to ionizing radiation during space missions is a major concern for NASA's manned spaceflight program, particularly exploration missions. For ethical and legal reasons, NASA follows the "as low as reasonably achievable" (ALARA) principal in managing astronaut's radiation exposures. One implementation of ALARA is the response to space weather events. Of particular concern are energetic solar particle events, and in low Earth orbit (LEO), electron belt enhancements. To properly respond to these events, NASA's Space Radiation Analysis Group (SRAG), in partnership with the NOAA Space Environment Center (SEC), provides continuous flight support during U.S. manned missions. In this partnership, SEC compiles space weather data from numerous ground and space based assets and makes it available in near real-time to SRAG (along with alerts and forecasts), who in turn uses these data as input to models to calculate estimates of the resulting exposure to astronauts. These calculations and vehicle instrument data form the basis for real-time recommendations to flight management. It is also important to implement ALARA during the design phase. In order to appropriately weigh the risks associated with various shielding and vehicle configuration concepts, the expected environment must be adequately characterized for nominal and worst case scenarios for that portion of the solar cycle and point in space. Even with the best shielding concepts and materials in place (unlikely), there will be numerous occasions where the crew is at greater risk due to being in a lower shielded environment (short term transit or lower shielded vehicles, EVAs), so that accurate space weather forecasts and nowcasts, of particles at the relevant energies, will be crucial to protecting crew health and safety.
    Keywords: Space Radiation
    Type: Solar and Space Physics and the Vision for Space Exploration; Oct 17, 2005 - Oct 21, 2005; Charlottesville, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: The advent of the Space Shuttle program has made possible space radiation environment measurements spanning a wide range of altitudes and orbital inclinations over multiple solar cycles. These measurements range from routine integral dose measurements with thermoluminescent dosimeters to particle energy spectra measurements made with a charged particle telescope. This paper will review the new understanding about the space radiation environment gained from this diverse data set. Major findings from these measurements include: estimations of the westward drift rate of the South Atlantic Anomaly (SAA) of 0.28-0.49/y; evidence for a northward component to the SAA drift of 0.08-0.12/y; observation of the formation and decay of the pseudo-stable additional radiation belt following the Mar 1991 SPE and geomagnetic storm with an estimated decay e-folding time of 9-10 months; observation of a local geomagnetic east-west trapped proton exposure anisotropy with an estimated magnitude of 1.6-3.3; demonstration that the trapped proton exposure in low-Earth orbit (LEO) can be reasonably modeled as a power law function of atmospheric density in the SAA region, with best correlations obtained when the exospheric temperature saturates at 938-975 K; the actual solar cycle modulation of trapped proton exposure in LEO is less than predicted by the AP8 model; and the testing and validation of GCR flux models, radiation transport codes, and dynamic geomagnetic cutoff models. Long-term, time-resolved proportional counter measurements made aboard the Mir during the same period provides further demonstration of the solar cycle modulation of the trapped protons at low altitudes - the observed modulation is also well described as power law function of atmospheric density. These data and findings have helped to improve the overall accuracy of pre-mission crew exposure projections using various semi-empirical space environment models, radiation transport codes, and spacecraft radiation shielding models. During the rise phase of solar cycle 22 (1987-1991), the RMS error between preflight exposure projections and measured crew exposure was 73%. For the rise phase of cycle 23 (1997-2001), the preflight exposure projection RMS error has decreased to 23%. The launch and assembly of the Space Station has begun a new era of long-term LEO space environment monitoring. The radiation environment at the Space Station will be monitored with three external charged particle telescopes oriented in the velocity vector, anti-velocity vector, and zenith directions. Data from the telescopes will provide charge, mass, energy, and arrival direction for incident particles with energy to mass ratios of 13- 450 MeV/amu and Z of 1-24. The external environment data will be complimented by measurements from a portable charged particle telescope and proportional counter located inside the vehicle.
    Keywords: Space Radiation
    Type: JSC-CN-6928 , International Space Environment Conference 2001; Jul 23, 2001 - Jul 27, 2001; Queenstown; New Zealand
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Space Radiation Analysis Group (SRAG) at Johnson Space Center (JSC) is tasked with monitoring changes to space weather and mitigating any resultant impacts to crew health and safety. As human spaceflight goals extend from Low-Earth Orbit (LEO) missions like the International Space Station (ISS) to the moon, Mars and beyond, SRAG will need to update their current approach for crew monitoring of and protection from radiation exposure due to energetic Solar Particle Events (ESPEs). Challenges faced in planning exo-LEO missions include the lack of protection from the Earths geomagnetic field employed by the ISS in addition to limited communication capability between the crew and the ground. In the event of an ESPE, the current ISS trajectory ensures that the vehicle is only traveling through fields of higher radiation exposure for a brief period of time; the Earths geomagnetic field prevents the penetration of the high-energy particles of concern throughout the majority of the orbit. Exo-LEO missions, on the other hand, require that the vehicle travel through free space, exposing vehicle and crew to the full impact of the ESPE. NASA has combined multiple approaches to resolve this radiation exposure issue. New vehicles are designed to take advantage of advances in particle transport modeling capabilities and shielding technology, allowing redistribution of mass throughout the vehicle to areas of thinner shielding when the energetic particle flux has increased to levels of concern. Although vehicle shielding is an important aspect of radiation exposure protection, there is a continued requirement to monitor and predict the space weather environment. To this end, SRAG maintains a console position in Mission Control with 24/7 mission support capability. In the event of increased solar activity, SRAG collaborates with the Flight Control Team (FCT) to determine if crew action (i.e., shelter) is required. During any increase in solar activity, the FCT needs three pieces of information to effectively decide the crew response in light of other required mission tasks: if an event (ESPE) will occur, how intense an observed event will be, and how long will an observed event will last. An ideal alert system limits false alarms, therefore causing the crew to take action unnecessarily, without ignoring events that pose a hazard to the crew. SRAGs current operational concept for ISS missions focuses on short-term forecasts, best described as now-casting. Console operators are in daily communication with the Space Weather Prediction Center (SWPC) for situational awareness purposes. When conditions exist that may lead to increased solar activity, operators receive notifications from SWPC. In the case of a well-connected ESPE, the console operator may only have on the order of minutes to several hours to notify the FCT of the event and provide a recommendation for crew action. As NASA shifts to exo-LEO missions, the increased time in free space as well as the reduced ability to communicate with the crew will force a transition in crew protection strategy that emphasizes improvments to both the accuracy and the lead time in forecasting capabilities.
    Keywords: Space Radiation
    Type: JSC-E-DAA-TN68244 , Applied Space Environments Conference; May 13, 2019 - May 17, 2019; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...