ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: The Mercure earthquake (Mw 5.6) of September 9, 1998 and the associated aftershocks occurred in a small Pleistocene–Holocene continental basin of the Southern Apennines, in a region of low instrumental and moderate historical seismicity. Seismological, photogeological and field survey data were analyzed and integrated in order to identify the likely seismogenic structure, to depict its 3-D geometry and kinematics and to provide further constraints to the seismogenic potential of the rupture processes in the study area. The mainshock occurred at the NW edge of the seismic sequence (40.03°N and 15.95°) at a depth of 10.5± 1.5 km. The aftershocks volume was determined from the relocation of about 200 events (1.1=Ml=3.9) registered by local networks from September 10 to October 12, 1998. The relocation procedure was based on choosing P and S waves for all the events and the definition of ten 9-layers velocity models appropriate for the different stations. The kinematics of the seismogenic deformation was defined through the computation of 36 well-constrained focal mechanisms. The seismological and geological stress tensors were determined through inversion of focal mechanisms and fault slip data. Both of them resulted in the tensional type, with ENE–WSW and NE–SW trending σ3 axis, respectively. The map and the section distribution of the aftershocks sequence depicts an average NW–SE striking and 60° SW-dipping seismogenic volume. Most of the events (80%) were located at depths between 3 and 8 km in the footwall of the Mercure basin (MBB) boundary fault but along the possible down-dip continuation of a previously unidentified, N120°E striking and WSW-dipping, Holocene normal fault alignment, which extends from Castello Seluci to Piana Perretti and Timpa della Manca (CPST fault). A small percentage of events (10%) were located at depths between 10 and 12 km where the CPST seismogenic fault may detach. The reconstructed rupture area (RA) of the Mercure 1998 earthquake has an along-strike length (L) of about 9 km and a down-dip width (W) of about 9 km, yielding a total area of approximately 81 km2 . On the other hand, the L and W dimension of the entire individual seismogenic structure identified as responsible for the earthquake, e.g. the CPST fault, are about 19 and 12 km, respectively, with a consequent RA of about 230 km2 . This may imply a maximum magnitude (Mw) equal to 6.3 which lead us to compare the Mercure area, in terms of seismogenic hazard, to the adjacent Pollino-Castrovillari area where strong paleoseismological events are documented.
    Description: Published
    Description: 210–225
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Southern Apennines ; Stress-distribution ; Earthquake location ; Seismotectonics ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We present a revision and a seismotectonic interpretation of deep crust strike–slip earthquake sequences that occurred in 1990– 1991 in the Southern Apennines (Potenza area). The revision is motivated by: i) the striking similarity to a seismic sequence that occurred in 2002 ∼140 km NNW, in an analogous tectonic context (Molise area), suggesting a common seismotectonic environment of regional importance; ii) the close proximity of such deep strike–slip seismicity with shallow extensional seismicity (Apennine area); and iii) the lack of knowledge about the mechanical properties of the crust that might justify the observed crustal seismicity. A comparison between the revised 1990–1991 earthquakes and the 2002 earthquakes, as well as the integration of seismological data with a rheological analysis offer new constraints on the regional seismotectonic context of crustal seismicity in the Southern Apennines. The seismological revision consists of a relocation of the aftershock sequences based on newly constrained velocity models. New focal mechanisms of the aftershocks are computed and the active state of stress is constrained via the use of a stress inversion technique. The relationships among the observed seismicity, the crustal structure of the Southern Apennines, and the rheological layering are analysed along a crustal section crossing southern Italy, by computing geotherms and two-mechanism (brittle frictional vs. ductile plastic strength) rheological profiles. The 1990–1991 seismicity is concentrated in a well-defined depth range (mostly between 15 and 23 km depths). This depth range corresponds to the upper pat of the middle crust underlying the Apulian sedimentary cover, in the footwall of the easternmost Apennine thrust system. The 3D distribution of the aftershocks, the fault kinematics, and the stress inversion indicate the activation of a right-lateral strike–slip fault striking N100°E under a stress field characterized by a sub-horizontal N142°-trending σ1 and a sub-horizontal N232°-trending σ3, very similar to the known stress field of the Gargano seismic zone in the Apulian foreland. The apparent anomalous depths of the earthquakes (N15 km) and the confinement within a relatively narrow depth range are explained by the crustal rheology, which consists of a strong brittle layer at mid crustal depths sandwiched between two plastic horizons. This articulated rheological stratification is typical of the central part of the Southern Apennine crust, where the Apulian crust is overthrusted by Apennine units. Both the Potenza 1990–1991 and the Molise 2002 seismic sequences can be interpreted to be due to crustal E–W fault zones within the Apulian crust inherited from previous tectonic phases and overthrusted by Apennine units during the Late Pliocene–Middle Pleistocene. The present strike–slip tectonic regime reactivated these fault zones and caused them to move with an uneven mechanical behaviour; brittle seismogenic faulting is confined to the strong brittle part of the middle crust. This strong brittle layer might also act as a stress guide able to laterally transmit the deviatoric stresses responsible for the strike–slip regime in the Apulian crust and may explain the close proximity (nearly overlapping) of the strike–slip and normal faulting regimes in the Southern Apennines. From a methodological point of view, it seems that rather simple two-mechanism rheological profiles, though affected by uncertainties, are still a useful tool for estimating the rheological properties and likely seismogenic behaviour of the crust.
    Description: Published
    Description: 281–300
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Strike–slip seismicity; ; Deep crust; ; Active stress; ; Crustal rheology; ; Seismotectonics; ; Southern Apennines ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...