ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-03
    Description: The scientific payload of SOHO, launched in December 1995, enables comprehensive studies of the sun from its interior, to the outer corona and solar wind. In its halo orbit around the Lagrangian point of the sun-earth system, the comprehensive suprathermal and energetic particle analyzer (COSTEP) measures in situ energetic partiles in the energy range 44 keV/particle to greater than 53 MeV/n. Although solar activity was at minimum, COSTEP detected from mid December 1995 until the end of July 1997, 30 solar energetic particle (SEP) events, including both gradual and implusive type SEPs. These minimum phase SEP events are unique in the sense that their associated solar source phenomena can be investigated in detail without interference by other simultaneous solar events as is usually the case at times around solar activity maximum. Simultaneous observations of the solar corona are provided by the large angle spectroscopic coronagraph (LASCO) and the extreme ultraviolet imaging telescope (EIT). From the correlated SOHO observations, a one to one correspondence of SEP events with coronal mass ejections (CMEs) was found. Most of the SEP events were associated with west-limb CMEs, some with halo CMEs that later passed the SOHO spacecraft and with Moreton-like disturbances in the lower solar atmosphere as observed by the EIT. Many SEP events were detected at sector boundaries of the interplanetary magnetic field (IMF) suggesting a magnetic connection to coronal streamers at the sun as supported by LASCO observations of mass ejections at the base of helmet streamers. Energetic particle and LASCO white-light observations yield evidence that CMEs often lead to large-scale disturbances of the sun's corona, probably affecting at times areas all around the sun.
    Keywords: Solar Physics
    Type: Proceedings of the 31st ESALB Symposium on Correlated Phenomena at the Sun, in the Heliosphere and in Geospace; 207-216; ESA-SP-415
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Magnetic holes in the solar wind, which are characterized by isolated local depressions in the magnetic field magnitude, have been observed previously. The Unified Radio and Plasma Wave (URAP) instrument of Ulysses has found that within such magnetic structures, electrostatic waves at kHz frequency and ultralow frequency electromagnetic waves are often excited and seen as short duration wave bursts. Most of these bursts occur near the ambient electron plasma frequency, which suggests that the waves are Langmuir waves. Such waves are usually excited by electron streams. Some evidence of the streaming of energetic electrons required for exciting Langmuir waves has been observed. These electrons may have originated at sources near the Sun, which would imply that the magnetic structures containing the waves would exist as long channels formed by field and plasma conditions near the Sun. On the other hand, the electrons could be suprathermal 'tails' from wave collapse processes occurring near the spacecraft. In either case, the Langmuir waves excited in the magnetic holes provide a measurement of the plasma density inside the holes. Low frequency electromagnetic waves, having frequencies of a fraction of the local electron cyclotron frequency, sometimes accompany the Langmuir waves observed in magnetic holes. Waves excited in this frequency range are very likely to be whistler-mode waves. They may have been excited by an electron temperature anisotropy which has been observed in the vicinity of the magnetic holes or generated through the decay of Langmuir waves.
    Keywords: Solar Physics
    Type: International Solar Wind 8 Conference; 76; NASA-CR-199940
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: Results are presented on the development of two coronal mass ejections (CMEs) obtained by comparing the observations of the large angle spectroscopic coronagraph (LASCO) and the extreme ultraviolet imaging telescope (EIT) instrument onboard the SOHO with those of the Nancay radioheliograph. The radioheliograph provides images at five levels in the corona. An excellent spatial association is found between the position and extent of the type 4 radio sources and the CMEs seen by LASCO. One result is the existence for these two events of discrete successive phases in their development. For these events, Ulysses and SOHO missions measured interplanetary particles of coronal origin. The coronal acceleration site was attempted to be identified, as well as the path of these particles from the corona to the interplanetary medium.
    Keywords: Solar Physics
    Type: Proceedings of the 31st ESALB Symposium on Correlated Phenomena at the Sun, in the Heliosphere and in Geospace; 195-198; ESA-SP-415
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...