ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of mathematical biology 39 (1999), S. 533-561 
    ISSN: 1432-1416
    Keywords: Key words: Biomolecular reactions ; Rate constants ; Singular perturbations ; Asymptotics ; Integral equations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Mathematics
    Notes: Abstract.  Many cellular reactions involve a reactant in solution binding to or dissociating from a reactant confined to a surface. This is true as well for a BIAcoreTM, an optical biosensor that is widely used to study the interaction of biomolecules. In the flow cell of this instrument, one of the reactants is immobilized on a flat sensor surface while the other reactant flows past the surface. Both diffusion and convection play important roles in bringing the reactants into contact. Usually BIAcoreTM binding data are analyzed using well known expressions that are valid only in the reaction-limited case when the Damköhler number Da is small. Asymptotic and singular perturbation techniques are used to analyze dissociation of the bound state when Da is small and O(1). Linear and nonlinear integral equations result from the analysis; explicit and asymptotic solutions are constructed for physically realizable cases. In addition, effective rate constants are derived that illustrate the effects of transport on the measured rate constants. All these expressions provide a direct way to estimate the rate constants from BIAcoreTM binding data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...