ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1990-11-30
    Description: Phospholipase C-gamma 1 (PLC-gamma 1), an isozyme of the phosphoinositide-specific phospholipase C family, which occupies a central role in hormonal signal transduction pathways, is an excellent substrate for the epidermal growth factor (EGF) receptor tyrosine kinase. Epidermal growth factor elicits tyrosine phosphorylation of PLC-gamma 1 and phosphatidylinositol 4,5-bisphosphate hydrolysis in various cell lines. The ability of tyrosine phosphorylation to activate the catalytic activity of PLC-gamma 1 was tested. Tyrosine phosphorylation in intact cells or in vitro increased the catalytic activity of PLC-gamma 1. Also, treatment of EGF-activated PLC-gamma 1 with a tyrosine-specific phosphatase substantially decreased the catalytic activity of PLC-gamma 1. These results suggest that the EGF-stimulated formation of inositol 1,4,5-trisphosphate and diacylglycerol in intact cells results, at least in part, from catalytic activation of PLC-gamma 1 through tyrosine phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nishibe, S -- Wahl, M I -- Hernandez-Sotomayor, S M -- Tonks, N K -- Rhee, S G -- Carpenter, G -- CA43720/CA/NCI NIH HHS/ -- GMO7347/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Nov 30;250(4985):1253-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1700866" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Diglycerides/metabolism ; Enzyme Activation/drug effects ; Epidermal Growth Factor/pharmacology ; Immunosorbent Techniques ; Inositol 1,4,5-Trisphosphate/metabolism ; Isoenzymes/*metabolism ; Kinetics ; Phosphatidylinositol 4,5-Diphosphate ; Phosphatidylinositol Diacylglycerol-Lyase ; Phosphatidylinositols/metabolism ; Phosphoric Diester Hydrolases/*metabolism ; Phosphorylation ; Phosphotyrosine ; Protein-Tyrosine Kinases/metabolism ; Receptor, Epidermal Growth Factor ; Signal Transduction ; Tyrosine/*analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1996-02-09
    Description: Bruton's tyrosine kinase (BTK) is pivotal in B cell activation and development through its participation in the signaling pathways of multiple hematopoietic receptors. The mechanisms controlling BTK activation were studied here by examination of the biochemical consequences of an interaction between BTK and SRC family kinases. This interaction of BTK with SRC kinases transphosphorylated BTK on tyrosine at residue 551, which led to BTK activation. BTK then autophosphorylated at a second site. The same two sites were phosphorylated upon B cell antigen receptor cross-linking. The activated BTK was predominantly membrane-associated, which suggests that BTK integrates distinct receptor signals resulting in SRC kinase activation and BTK membrane targeting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rawlings, D J -- Scharenberg, A M -- Park, H -- Wahl, M I -- Lin, S -- Kato, R M -- Fluckiger, A C -- Witte, O N -- Kinet, J P -- AR01912/AR/NIAMS NIH HHS/ -- AR36834/AR/NIAMS NIH HHS/ -- CA09120-20/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1996 Feb 9;271(5250):822-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90095-1662, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8629002" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; B-Lymphocytes/*enzymology ; Cell Line, Transformed ; Cell Membrane/enzymology ; Enzyme Activation ; Immunoglobulin M/immunology ; Lymphocyte Activation ; Mice ; Mutation ; Phosphopeptides/analysis ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein-Tyrosine Kinases/chemistry/genetics/*metabolism ; Receptors, Antigen, B-Cell/metabolism ; Signal Transduction ; src-Family Kinases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...