ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2145
    Keywords: Self-incompatibility ; S-ribonucleases ; Pollen ; Protein kinases ; Phosphorylation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Solanaceous plants with gametophytic self-incompatibility produce ribonucleases in the transmitting tract of the style that interact with self-pollen and inhibit its growth. These ribonucleases are a series of allelic products of the S-locus, which controls self-incompatibility. Little is known about the pollen components involved in this interaction or whether a signal transduction pathway is activated during the self-incompatibility response. We have partially purified a soluble protein kinase from pollen tubes of Nicotiana alata that phosphorylates the self-incompatibility RNases (S-RNases) from N. alata but not Lycopersicon peruvianum. The soluble protein kinase (Nak-1) has several features shared by the calcium-dependent protein kinase (CDPK) class of plant protein kinases, including substrate specificity, calcium dependence, inhibition by the calmodulin antagonist calmidazolium, and cross-reaction with monoclonal antibodies raised to a CDPK from soybean. Phosphorylation of S 2-RNase by Nak-1 is restricted to serine residues, but the site(s) of phosphorylation has not been determined and there is no evidence for allele-specific phosphorylation. The microsomal fraction from pollen tubes also phosphorylates S-RNases and this activity may be associated with proteins of Mr∼60 K and 69 K that cross-react with the monoclonal antibody to the soybean CDPK. These results are discussed in the context of the involvement of phosphorylation in other self-incompatibility systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2145
    Keywords: Hydroxyproline-rich glycoprotein ; Pistil ; Pollen tubes ; Self-incompatibility
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Pistils ofNicotiana alata (Link et Otto) contain an abundant, style-specific glycoprotein (120 kDa) that is rich in hydroxyproline and has both extensin-like and arabinogalactan-protein-like carbohydrate substituents. An antibody specific for the protein backbone of the glycoprotein was used to localise the glycoprotein in both unpollinated and pollinated pistils. The glycoprotein is evenly distributed in the extracellular matrix of the style transmitting tract of unpollinated pistils and, despite the presence of extensin-like carbohydrate substituents, is not associated with the walls of the transmitting tract cells. In pollinated pistils the 120-kDa glycoprotein is concentrated in the extracellular matrix adjacent to pollen tubes, and is also present in the cytoplasm and the cell walls of pollen tubes. Pollen tubes grown in vitro do not contain the 120-kDa glycoprotein unless it is added to the growth medium, suggesting that the 120kDa glycoprotein located in pistil-grown pollen tubes is derived from the extracellular matrix of the transmitting tract.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...