ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Marine Geology 338 (2013): 46–63, doi:10.1016/j.margeo.2012.12.008.
    Description: The increasing volume of multibeam bathymetry data collected along continental margins is providing new opportunities to study the feedbacks between sedimentary and oceanographic processes and seafloor morphology. Attempts to develop simple guidelines that describe the relationships between form and process often overlook the importance of inherited physiography in slope depositional systems. Here, we use multibeam bathymetry data and seismic reflection profiles spanning the U.S. Atlantic outer continental shelf, slope and rise from Cape Hatteras to New England to quantify the broad-scale, across-margin morphological variation. Morphometric analyses suggest the margin can be divided into four basic categories that roughly align with Quaternary sedimentary provinces. Within each category, Quaternary sedimentary processes exerted heavy modification of submarine canyons, landslide complexes and the broad-scale morphology of the continental rise, but they appear to have preserved much of the pre-Quaternary, across-margin shape of the continental slope. Without detailed constraints on the substrate structure, first-order morphological categorization the U.S. Atlantic margin does not provide a reliable framework for predicting relationships between form and process.
    Description: This work was funded by the USGS Mendenhall Postdoctoral Fellowship Program and the U.S. Nuclear Regulatory Commission.
    Keywords: Passive margin ; Continental slope ; Classification ; Submarine canyon ; Seismic reflection ; Multibeam bathymetry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 40 (2013): 4244-4248, doi:10.1002/grl.50830.
    Description: Active tectonic regions where plate boundaries transition from subduction to strike slip can take several forms, such as triple junctions, acute, and obtuse corners. Well‐documented slab tears that are associated with high rates of intermediate‐depth seismicity are considered here: Gibraltar arc, the southern and northern ends of the Lesser Antilles arc, and the northern end of Tonga trench. Seismicity at each of these locations occurs, at times, in the form of swarms or clusters, and various authors have proposed that each marks an active locus of tear propagation. The swarms and clusters start at the top of the slab below the asthenospheric wedge and extend 30–60 km vertically downward within the slab. We propose that these swarms and clusters are generated by fluid‐related embrittlement of mantle rocks. Focal mechanisms of these swarms generally fit the shear motion that is thought to be associated with the tearing process.
    Keywords: Slab tear ; Intermediate seismicity ; Subduction corner
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. Published in 2005 by the American Geophysical Union. The definitive version was published in Journal of Geophysical Research 110 (2005): B06404, doi:10.1029/2004JB003459.
    Description: The Puerto Rico trench exhibits great water depth, an extremely low gravity anomaly, and a tilted carbonate platform between (reconstructed) elevations of +1300 m and −4000 m. I argue that these features are manifestations of large vertical movements of a segment of the Puerto Rico trench, its forearc, and the island of Puerto Rico that took place 3.3 m.y. ago over a time period as short as 14–40 kyr. I explain these vertical movements by a sudden increase in the slab's descent angle that caused the trench to subside and the island to rise. The increased dip could have been caused by shearing or even by a complete tear of the descending North American slab, although the exact nature of this deformation is unknown. The rapid (14–40 kyr) and uniform tilt along a 250 km long section of the trench is compatible with scales of mantle flow and plate bending. The proposed shear zone or tear is inferred from seismic, morphological, and gravity observations to start at the trench at 64.5°W and trend southwestwardly toward eastern Puerto Rico. The tensile stresses necessary to deform or tear the slab could have been generated by increased curvature of the trench following a counterclockwise rotation of the upper plate and by the subduction of a large seamount.
    Keywords: Dynamic topography ; Slab tear ; Puerto Rico trench ; Caribbean plate ; Challenger Deep ; Seamount subduction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 3365513 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Tectonophysics 493 (2010): 74-92, doi:10.1016/j.tecto.2010.07.002.
    Description: As shown by the recent Mw 7.0 Haiti earthquake, intra-arc deformation, which accompanies the subduction process, can present seismic and tsunami hazards to nearby islands. Spatially-limited diffuse tectonic deformation within the Northeast Caribbean Plate Boundary Zone likely led to the development of the submerged Mona Passage between Puerto Rico and the Dominican Republic. GPS geodetic data and a moderate to high level of seismicity indicate that extension within the region is ongoing. Newly-collected high-resolution multibeam bathymetry and multi-channel seismic reflection profiles and previously-collected samples are used here to determine the tectonic evolution of the Mona Passage intra-arc region. The passage is floored almost completely by Oligocene–Pliocene carbonate platform strata, which have undergone submarine and subaerial erosion. Structurally, the passage is characterized by W- to NNW-trending normal faults that offset the entire thickness of the Oligo–Pliocene carbonate platform rocks. The orientation of these faults is compatible with the NE-oriented extension vector observed in GPS data. Fault geometry best fits an oblique extension model rather than previously proposed single-phase, poly-phase, bending-moment, or rotation extension models. The intersection of these generally NW-trending faults in Mona Passage with the N–S oriented faults of Mona Canyon may reflect differing responses of the brittle upper-crust, along an arc–forearc rheological boundary, to oblique subduction along the Puerto Rico trench. Several faults within the passage, if ruptured completely, are long enough to generate earthquakes with magnitudes on the order of Mw 6.5–7.
    Keywords: Bathymetry ; Seismic reflection ; Earthquakes ; Oblique extension ; Geomorphology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...