ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Saccharomyces cerevisiae  (1)
  • hydroxylase  (1)
Collection
Keywords
Publisher
Years
  • 1
    ISSN: 0749-503X
    Keywords: Ca2+ sensitive mutants ; Saccharomyces cerevisiae ; P-type ATPases ; Cu2+ ; CCC2 ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: We have isolated, sequenced, mapped and disrupted a gene, CCC2, from Saccharomyces cerevisiae. This gene displays non-allelic complementation of the Ca2+-sensitive phenotype conferred by the csg1 mutation. Analysis of the CCC2p amino acid sequence reveals that it encodes a member of the P-type ATPase family and is most similar to a subfamily thought to consist of Cu2+ transporters, including the human genes that mutate to cause Wilson disease and Menkes disease. The ability of this gene, in two or more copies, to reverse the csg1 defect suggests that Ca2+-induced death of csg1 mutant cells is related to Cu2+ metabolism. Cells without CCC2 require increased Cu2+ concentrations for growth. Therefore CCC2p may function to provide Cu2+ to a cellular compartment rather than in removal of excess of Cu2+. The sequence of CCC2 is available through GenBank under accession number L36317.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0749-503X
    Keywords: sphingolipids ; hydroxylase ; cytochrome b5 ; CSG1 ; CSG2 ; calcium ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Saccharomyces cerevisiae mutants lacking Scs7p fail to accumulate the inositolphosphorylceramide (IPC) species, IPC-C, which is the predominant form found in wild-type cells. Instead scs7 mutants accumulate an IPC-B species believed to be unhydroxylated on the amide-linked C26-fatty acid. Elimination of the SCS7 gene suppresses the Ca2+-sensitive phenotype of csg1 and csg2 mutants. The CSG1 and CSG2 genes are required for mannosylation of IPC-C and accumulation of IPC-C by the csg mutants renders them Ca2+-sensitive. The SCS7 gene encodes a protein that contains both a cytochrome b5-like domain and a domain that resembles the family of cytochrome b5-dependent enzymes that use iron and oxygen to catalyse desaturation or hydroxylation of fatty acids and sterols. Scs7p is therefore likely to be the enzyme that hydroxylates the C26-fatty acid of IPC-C. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...