ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4919
    Keywords: acyl-CoA-binding protein ; acyl-CoA transport and pool formation ; diazepam-binding-inhibitor ; heterologous expression in yeast ; primary and tertiary structure ; tissue distribution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Acyl-CoA-binding protein has been isolated independently by five different groups based on its ability to (1) displace diazepam from the GABAA receptor, (2) affect cell growth, (3) induce medium-chain acyl-CoA-ester synthesis, (4) stimulate steroid hormone synthesis, and (5) affect glucose-induced insulin secretion. In this survey evidence is presented to show that ACBP is able to act as an intracellular acyl-CoA transporter and acyl-CoA pool former. The rat ACBP genomic gene consists of 4 exons and is actively expressed in all tissues tested with highest concentration being found in liver. ACBP consists of 86 amino acid residues and contains 4 α-helices which are folded into a boomerang type of structure with α-helices 1, 2 and 4 in the one arm and α-helix 3 and an open loop in the other arm of the boomerang. ACBP is able to stimulate mitochondrial acyl-CoA synthetase by removing acyl-CoA esters from the enzyme. ACBP is also able to desorb acyl-CoA esters from immobilized membranes and transport and deliver these for mitochondrial β-oxidation. ACBP efficiently protects acetyl-CoA carboxylase and the mitochondrial ADP/ATP translocase against acyl-CoA inhibition. Finally, ACBP is shown to be able to act as an intracellular acyl-CoA pool former by overexpression in yeast. The possible role of ACBP in lipid metabolism is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0749-503X
    Keywords: acyl-CoA binding protein ; ACB1 ; Saccharomyces cerevisiae ; Saccharomyces carlsbergensis ; Saccharomyces monacensis ; brewing yeasts ; hybrid yeast ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Saccharomyces carlsbergensis is an amphiploid, and it has previously been suggested that the genomes of S. carlsbergensis originate from S. cerevisiae and S. monacensis. We have cloned the ACB1 genes encoding the acyl-CoA binding protein (ACBP) from S. carlsbergensis, S. cerevisiae and S. monacensis. Two genes were found in S. carlsbergensis and named ACB1 type 1 and type 2, respectively. The type 1 gene is identical to the S. cerevisiae ACB1 gene except for three substitutions, one single base pair deletion and one double base pair insertion, all located in the promoter region. The type 2 gene is completely identical to the S. monacensis ACB1 gene. These findings substantiate the notion that S. carlsbergensis is a hybrid between S. cerevisiae and S. monacensis.Both ACB1 type 1 and type 2 are actively transcribed in S. carlsbergensis and transcription is initiated at sites identical to those used for transcriptional initiation of the ACB1 genes in S. cerevisiae and S. monacensis, respectively. Two polyadenylation sites, spaced 225 bp apart, are present in the S. cerevisiae ACB1 gene. The upstream polyadenylation site is used exclusively during exponential growth, whereas both sites are utilized during later stages of growth. All sequence information is listed under EMBL Accession Numbers Y08687, Y08688, Y08689 and Y08690. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...