ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-10-02
    Description: An AGARD Supplemental Test Program on the growth of short fatigue cracks was conducted to allow testing of various materials and loading conditions that were of interest. Twenty-two participants from ten laboratories in eight countries contributed to the supplemental test program. The objective is to review the supplemental test program and to summarize the results obtained from all laboratories. The materials tested in the supplemental program were: 2024-T3 and 7075-T6 aluminum alloys, 2090-T8E41 aluminum-lithium alloy, Ti6Al4V titanium alloy, and 4340 steel. Tests on single-edge-notch-tension specimens were conducted under several constant-amplitude loading conditions and spectrum loading conditions (FALSTAFF, Inverted FALSTAFF, GAUSSIAN, TWIST, Felix, and the Fokker 100 spectra). The plastic-replica method was used to measure the growth of short cracks at the notch root. The results from the supplemental test program show good agreement among the several laboratories who measured short-crack growth rates on the aluminum-lithium alloy.
    Keywords: STRUCTURAL MECHANICS
    Type: AGARD, Short-Crack Growth Behaviour in Various Aircraft Materials; 43 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-10-02
    Description: An AGARD Cooperative Test Program on the growth of short fatigue cracks was conducted to define the significance of the short-crack effect, to compare test results from various laboratories, and to evaluate an existing analytical crack-growth prediction model. The initiation and growth of short fatigue cracks (5 micrometer to 2 mm) from the surface of a semi-circular notch in 2024-T3 aluminum alloy sheet material were monitored under various load histories. The cracks initiated from inclusion particle clusters or voids on the notch surface and generally grew as surface cracks. Tests were conducted under several constant-amplitude (stress ratios of -2, -1, 0, and 0.5) and spectrum (FALSTAFF and Gaussian) loading conditions at 3 stress levels each. Short crack growth was recorded using a plastic-replica technique. Over 250 edge-notched specimens were fatigue tested and nearly 950 cracks monitored by 12 participants from 9 countries. Long crack-growth rate data for cracks greater than 2 mm in length were obtained over a wide range in rates (10 to the -8 to 10 to the -1 mm/cycle) for all constant-amplitude loading conditions. Long crack-growth rate data for the FALSTAFF and Gaussian load sequences were also obtained.
    Keywords: STRUCTURAL MECHANICS
    Type: AGARD, Short-Crack Growth Behaviour in an Aluminum Alloy: An AGARD Cooperative Test Programme; p 1-60
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-02
    Description: In alignment verification procedures each laboratory is required to align its test machines and gripping fixtures to produce a nearly uniform tensile stress field on an un-notched sheet specimen. The blank specimens (50 mm w X 305 mm l X 2.3 mm th) supplied by the coordinators were strain gauged. Strain gauge readings were taken at all gauges (n = 1 through 10). The alignment verification procedures are as follows: (1) zero all strain gauges while specimen is in a free-supported condition; (2) put strain-gauged specimen in the test machine so that specimen front face (face 1) is in contact with reference jaw (standard position of specimen), tighten grips, and at zero load measure strains on all gauges. (epsilon sub nS0 is strain at gauge n, standard position, zero load); (3) with specimen in machine and at a tensile load of 10 kN measure strains (specimen in standard position). (Strain = epsilon sub nS10); (4) remove specimen from machine. Put specimen in machine so that specimen back face (face 2) is in contact with reference jaw (reverse position of specimen), tighten grips, and at zero load measure strains on all gauges. (Strain - epsilon sub nR0); and (5) with specimen in machine and at tensile load of 10 kN measure strains (specimen in reverse position). (epsilon sub nR10 is strain at gauge n, reverse position, 10 kN load).
    Keywords: STRUCTURAL MECHANICS
    Type: AGARD, Short-Crack Growth Behaviour in an Aluminum Alloy: An AGARD Cooperative Test Programme; p 70-71
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: The results of the first phase of an AGARD Cooperative Test Program on the behavior and growth of short fatigue cracks are reviewed. The establishment of a common test method, means of data collection/analysis and crack growth modeling in an aircraft alloy AA 2024-T3 are described. The second phase allowed testing of various materials and loading conditions. The results of this second phase are described. All materials exhibited a short-crack effect to some extent. The effect was much less evident in 4340 steel than in the other materials. For the aluminum, aluminum-lithium, and titanium alloys, short cracks grew at stress-intensity factor ranges lower, in some cases much lower, than the thresholds obtained from long crack tests. Several laboratories used the same crack growth model to analyze the growth of short cracks. Reasonable agreement was found between measured and predicted short-crack growth rates and fatigue lives.
    Keywords: STRUCTURAL MECHANICS
    Type: AGARD-R-767 , AD-A227422
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: An AGARD test program on the growth of short fatigue cracks was conducted to define the significance of the short-crack effect, to compare test results from various laboratories and to evaluate an existing analytical model to predict the growth of such cracks. The first phase of this program, the Core Program was aimed at test procedure and specimen standardization and calibration of the various laboratories. A detailed working document has been prepared and is included in this report. It describes the testing fundamentals and procedures and includes the analysis procedures used for handling the test data. The results from the test program showed good agreement among the participants on short-crack growth rates, on fatigue life to various crack sizes and breakthrough (surface- or corner-crack became a through crack), and on crack shapes.
    Keywords: STRUCTURAL MECHANICS
    Type: AGARD-R-732 , AD-A205648
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...