ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: A reduced dynamic filtering strategy that exploits the unique geometric strength of the Global Positioning System (GPS) to minimize the effects of force model errors has yielded orbit solutions for TOPEX/POSEIDON which appear accurate to better than 3 cm (1 sigma) in the radial component. Reduction of model error also reduces the geographic correlation of the orbit error. With a traditional dynamic approach, GPS yields radial orbit accuracies of 4-5 cm, comparable to the accuracy delivered by satellite laser ranging and the Doppler orbitography and radio positioning integrated by satellite (DORIS) tracking system. A portion of the dynamic orbit error is in the Joint Gravity Model-2 (JGM-2); GPS data from TOPEX/POSEIDON can readily reveal that error and have been used to improve the gravity model.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; C12; p. 24,449-24,464
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: We present estimates for the mean bias of the TOPEX/POSEIDON NASA altimeter (ALT) and the Centre National d'Etudes Spatiales altimeter (SSALT) using in-situ data gathered at Platform Harvest during the first 36 cycles of the mission. Data for 21 overflights of the ALT and six overflights of the SSALT have been analyzed. The analysis includes an independent assessment of in-situ measurements of sea level, the radial component of the orbit, wet tropospheric path delay, and ionospheric path delay. (The sign convention used is such that, to correct the geophysical data record values for sea level, add the bias algebraically. Unless otherwise stated, the uncertainty in a given parameter is depicted by +/- sigma(sub x), where sigma(sub x) is the sample standard deviation of x about the mean.) Tide gauges at Harvest provide estimates of sea level with an uncertainty of +/- 1.5 cm. The uncertainty in the radial component of the orbit is estimated to be +/- 1.3 cm. In-situ measurements of tropopsheric path delay at Harvest compare to within +/- 1.3 cm of the TOPEX/POSEIDON microwave radiometer, and in-situ measurements of the ionospheric path delay compare to within -0.4 +/- 0.7 cm of the dual-frequency ALT and 1.1 +/- 0.6 cm of Doppler orbitography and radiopositioning integrated by satellite. We obtain mean bias estimates of -14.5 +/- 2.9 cm for the ALT and +0.9 +/- 3.1 cm for the SSALT (where the uncertainties are based on the standard deviation of the estimated mean (sigma(sub bar x/y), which is derived from sample statistics and estimates for errors that cannot be observed). These results are consistent with independent estimates for the relative bias between the two altimeters. A linear regression applied to the complete set of data shows that there is a discernable secular trend in the time series for the ALT bias estimates. A preliminary analysis of data obtained through cycle 48 suggests that the apparent secular drift may be the result of a poorly sampled annual signal.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; C12; p. 24,465-24,485
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-28
    Description: We have compared Global Positioning System (GPS)-based dynamic and reduced-dynamic TOPEX/Poseidon orbits over three 10-day repeat cycles of the ground-track. The results suggest that the prelaunch joint gravity model (JGM-1) introduces geographically correlated errors (GCEs) which have a strong meridional dependence. The global distribution and magnitude of these GCEs are consistent with a prelaunch covariance analysis, with estimated and predicted global rms error statistics of 2.3 and 2.4 cm rms, respectively. Repeating the analysis with the post-launch joint gravity model (JGM-2) suggests that a portion of the meridional dependence observed in JGM-1 still remains, with global rms error of 1.2 cm.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 19; p. 2175-2178
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...