ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-29
    Description: More than 270 gamma ray bursts have been observed to date with the BATSE (Burst and Transient Source Experiment) aboard the Compton Gamma Ray Observatory. Many have a duration of 10 seconds or more and complex structure with multiple peaks or spikes. Complex bursts in the energy range 30 keV to 1 MeV were systematically analyzed to determine the relations between intensity and spectral shape, or hardness. The burst hardness rises and falls in during spikes, but somewhat earlier than the intensity. A simple correlation between intensity and hardness is, therefore, not observed: the intensity lags instead. Results from one burst which shows evidence for longer lags in longer spikes are reported.
    Keywords: SPACE RADIATION
    Type: ESA, Environment Observation and Climate Modelling Through International Space Projects. Space Sciences with Particular Emphasis on High-Energy Astrophysics; p 161-162
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: BATSE's Spectral Detectors provide a series of high resolution spectra over the duration of a gamma-ray burst; fits to these spectra show the evolution of the continuum as the burst progresses. The burst continuum can usually be fit by the spectral form AE sup alpha exp(-E/kT) from around 25 keV to more than 3 MeV, with varying trends in the value and evolution of the spectral parameters. As a result of limited statistics for E greater than 1 - 2 MeV in the individual spectra, a high energy power law is not required. Only long duration strong bursts can be studied by fitting a series of spectra, and therefore our conclusions concern only this class of burst. The bursts we analyzed tend to be characterized by a hard-to-soft trend both for individual intensity spikes and for the burst as a whole: the hardness leads the count rate in spectra which resolve the temporal variations, while the hardness of successive spikes decreases. We also summarize the performance of the Spectral Detectors and the development of analysis tools to date.
    Keywords: SPACE RADIATION
    Type: In: Gamma-ray bursts; Proceedings of the Workshop, Univ. of Alabama, Huntsville, Oct. 16-18, 1991 (A93-40051 16-93); p. 169-179.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: We studied the time-averaged gamma-ray burst spectra accumulated by the spectroscopy detectors of the Burst and Transient Source Experiment. The spectra are described well at low energy by a power-law continuum with an exponential cutoff and by a steeper power law at high energy. However, the spectral parameters vary from burst to burst with no universal values. The break in the spectrum ranges from below 100 keV to more than 1 MeV, but peaks below 200 keV with only a small fraction of the spectra breaking above 400 keV; it is therefore unlikely that a majority of the burst spectra are shaped directly by pair processes, unless bursts originate from a broad redshift range. The correlations among burst parameters do not fulfill the predictions of the cosmological models of burst origin. No correlations with burst morphology or the spatial distribution were found. We demonstrate the importance of using a complete spectral description even if a partial description (e.g., a model without a high-energy tail) is statistically satisfactory.
    Keywords: SPACE RADIATION
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 413; 1; p. 281-292.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...