ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • SOLAR PHYSICS  (1)
  • stars: late-type  (1)
  • 1
    Publication Date: 2019-06-28
    Description: Solar Maximum Mission (SMM) and ground-based observations are given for two flares which occurred 3 min apart in the same section of the active region. The physical characteristics of the two flares are derived and compared, and the main difference between them is noted to be in the preflare state of the coronal plasma at the flare site. These data suggest that the plasma filling the flaring loops absorbed most of the energy released during the impulsive phase of the second flare, so that only a fraction of the energy could reach the chromosphere to produce mass motions and turbulence. Since a study of the brightest flares observed by SMM shows that at least 43 percent of them are multiple, the situation presently studied may be quite common, and the difference in initial plasma conditions could explain at least some of the large variations in observed flare parameters.
    Keywords: SOLAR PHYSICS
    Type: Solar Physics (ISSN 0038-0938); 91; 325-344
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The astronomy and astrophysics review 3 (1991), S. 127-168 
    ISSN: 1432-0754
    Keywords: stars: coronae of ; stars: late-type ; stars: early-type ; stars: activity of ; stars: binaries: general ; stars: flare ; X-rays: spectroscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Summary From the early discovery in 1948 of X-rays from the Solar corona, X-ray spectroscopy has proven to be an invaluable tool in studying hot astrophysical and laboratory plasmas. Because the emission line spectra and continua from optically thin plasmas are fairly well known, high-resolution X-ray spectroscopy has its most obvious application in the measurement of optically thin sources such as the coronae of stars. In particular X-ray observations with theEINSTEIN observatory have demonstrated that soft X-ray emitting coronae are a common feature among stars on the cool side of the Hertzsprung-Russell diagram, with the probable exception of single very cool giant and supergiant stars and A-type dwarfs. Observations with the spectrometers aboardEINSTEIN andEXOSAT have shown that data of even modest spectral resolution (α/Δα = 10–100) permit the identification of coronal material at different temperatures whose existence may relate to a range of possible magnetic loop structures in the hot outer atmospheres of these stars. The higher spectral resolution of the next generation of spectrometers aboard NASA'sAXAF and ESA'sXMM will allow to fully resolve the coronal temperature structure and to enable velocity diagnostics and the determination of coronal densities, from which the loop geometry (i.e. surface filling factors and loop lengths) can be derived. In this paper various diagnostic techniques are reviewed and the spectral results fromEINSTEIN andEXOSAT are discussed. A number of spectral simulations forAXAF andXMM, especially high-resolution iron K-shell, L-shell, and2s-2p spectra in the wavelength regions around 1.9 Å, 10 Å, and 100 Å, respectively, are shown to demonstrate the capabilities for temperature, density, and velocity diagnostics. Finally, iron K-shell spectra are simulated for various types of detectors such as microcalorimeter, Nb-junction, and CCD.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...