ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-13
    Description: This paper describes the recent use of coherent anti-Stokes Raman spectroscopy (CARS) to study supersonic combustion at NASA Langley Research Center. CARS is a nonlinear optical measurement technique used to measure temperature and species mole fractions remotely in harsh environments. A CARS system has been applied to two different combustor geometries at NASA Langley. Both experiments used the same vitiated wind-tunnel facility to create an air flow that simulates flight at Mach numbers of 6 and 7 for the combustor inlet and both experiments used hydrogen fuel. In the first experiment, the hydrogen was injected supersonically at a 30-degree angle with respect to the incoming flow. In the second experiment, the hydrogen was injected sonically at normal incidence. While these injection schemes produced significantly different flow features, the CARS method provided mean temperature, N2, O2 and H2 maps at multiple downstream locations for both. The primary aim of these measurements was to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.
    Keywords: Research and Support Facilities (Air)
    Type: JANNAF 40th Combustion/28th Airbreathing Propulsion/22nd Propulsion Systems Hazards/4th Modeling and Simulation Joint Subcommittee Meeting; Jun 13, 2005 - Jun 17, 2005; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Two-dimensional rotational and vibrational temperature measurements were made at the nozzle exit of a free-piston shock tunnel using planar laser-induced fluorescence. The Mach 7 flow consisted predominantly of nitrogen with a trace quantity of nitric oxide. Nitric oxide was employed as the probe species and was excited at 225 nm. Nonuniformities in the distribution of nitric oxide in the test gas were observed and were concluded to be due to contamination of the test gas by driver gas or cold test gas.The nozzle-exit rotational temperature was measured and is in reasonable agreement with computational modeling. Nonlinearities in the detection system were responsible for systematic errors in the measurements. The vibrational temperature was measured to be constant with distance from the nozzle exit, indicating it had frozen during the nozzle expansion.
    Keywords: Research and Support Facilities (Air)
    Type: AIAA Paper 98-2703 , AIAA Journal; 41; 9; 1722-1732|20th AIAA Advanced Measurement and Ground Testing Technology Conference; Jun 15, 2001 - Jun 18, 2001; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...