ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-02-28
    Description: Commitment to and completion of sexual development are essential for malaria parasites (protists of the genus Plasmodium) to be transmitted through mosquitoes. The molecular mechanism(s) responsible for commitment have been hitherto unknown. Here we show that PbAP2-G, a conserved member of the apicomplexan AP2 (ApiAP2) family of DNA-binding proteins, is essential for the commitment of asexually replicating forms to sexual development in Plasmodium berghei, a malaria parasite of rodents. PbAP2-G was identified from mutations in its encoding gene, PBANKA_143750, which account for the loss of sexual development frequently observed in parasites transmitted artificially by blood passage. Systematic gene deletion of conserved ApiAP2 genes in Plasmodium confirmed the role of PbAP2-G and revealed a second ApiAP2 member (PBANKA_103430, here termed PbAP2-G2) that significantly modulates but does not abolish gametocytogenesis, indicating that a cascade of ApiAP2 proteins are involved in commitment to the production and maturation of gametocytes. The data suggest a mechanism of commitment to gametocytogenesis in Plasmodium consistent with a positive feedback loop involving PbAP2-G that could be exploited to prevent the transmission of this pernicious parasite.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105895/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105895/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sinha, Abhinav -- Hughes, Katie R -- Modrzynska, Katarzyna K -- Otto, Thomas D -- Pfander, Claudia -- Dickens, Nicholas J -- Religa, Agnieszka A -- Bushell, Ellen -- Graham, Anne L -- Cameron, Rachael -- Kafsack, Bjorn F C -- Williams, April E -- Llinas, Manuel -- Berriman, Matthew -- Billker, Oliver -- Waters, Andrew P -- 083811/Wellcome Trust/United Kingdom -- 083811/Z/07/Z/Wellcome Trust/United Kingdom -- 085349/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- 104111/Wellcome Trust/United Kingdom -- G0501670/Medical Research Council/United Kingdom -- P50 GM071508/GM/NIGMS NIH HHS/ -- P50GM071508/GM/NIGMS NIH HHS/ -- R01 AI076276/AI/NIAID NIH HHS/ -- T32 GM007388/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Mar 13;507(7491):253-7. doi: 10.1038/nature12970. Epub 2014 Feb 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8QQ, UK [2]. ; 1] Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK [2]. ; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK. ; Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8QQ, UK. ; Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA. ; 1] Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA [2] Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA. ; 1] Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA [2] Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA [3] Department of Biochemistry and Molecular Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, State College, Pennsylvania 16802, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24572359" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Culicidae/parasitology ; DNA-Binding Proteins/deficiency/genetics/*metabolism ; Feedback, Physiological ; Female ; Gene Expression Regulation ; Germ Cells/cytology/*growth & development/metabolism ; Malaria/*parasitology ; Male ; Mutation/genetics ; Plasmodium berghei/cytology/*genetics/*physiology ; Protein Transport ; Protozoan Proteins/genetics/*metabolism ; Reproduction, Asexual ; Sexual Development/*genetics ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-28
    Description: The life cycles of many parasites involve transitions between disparate host species, requiring these parasites to go through multiple developmental stages adapted to each of these specialized niches. Transmission of malaria parasites (Plasmodium spp.) from humans to the mosquito vector requires differentiation from asexual stages replicating within red blood cells into non-dividing male and female gametocytes. Although gametocytes were first described in 1880, our understanding of the molecular mechanisms involved in commitment to gametocyte formation is extremely limited, and disrupting this critical developmental transition remains a long-standing goal. Here we show that expression levels of the DNA-binding protein PfAP2-G correlate strongly with levels of gametocyte formation. Using independent forward and reverse genetics approaches, we demonstrate that PfAP2-G function is essential for parasite sexual differentiation. By combining genome-wide PfAP2-G cognate motif occurrence with global transcriptional changes resulting from PfAP2-G ablation, we identify early gametocyte genes as probable targets of PfAP2-G and show that their regulation by PfAP2-G is critical for their wild-type level expression. In the asexual blood-stage parasites pfap2-g appears to be among a set of epigenetically silenced loci prone to spontaneous activation. Stochastic activation presents a simple mechanism for a low baseline of gametocyte production. Overall, these findings identify PfAP2-G as a master regulator of sexual-stage development in malaria parasites and mark the first discovery of a transcriptional switch controlling a differentiation decision in protozoan parasites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040541/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040541/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kafsack, Bjorn F C -- Rovira-Graells, Nuria -- Clark, Taane G -- Bancells, Cristina -- Crowley, Valerie M -- Campino, Susana G -- Williams, April E -- Drought, Laura G -- Kwiatkowski, Dominic P -- Baker, David A -- Cortes, Alfred -- Llinas, Manuel -- 090532/Wellcome Trust/United Kingdom -- 090532/Z/09/Z/Wellcome Trust/United Kingdom -- 090770/Wellcome Trust/United Kingdom -- 094752/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- G0600230/Medical Research Council/United Kingdom -- G0600718/Medical Research Council/United Kingdom -- J005398/Medical Research Council/United Kingdom -- P50GM071508/GM/NIGMS NIH HHS/ -- R01 AI076276/AI/NIAID NIH HHS/ -- T32 GM007388/GM/NIGMS NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Mar 13;507(7491):248-52. doi: 10.1038/nature12920. Epub 2014 Feb 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA [2] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA (B.F.C.K.); Department of Molecular Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, State College, Pennsylvania 16802, USA (V.M.C., M.L.). ; 1] Barcelona Centre for International Health Research (CRESIB, Hospital Clinic-Universitat de Barcelona), Barcelona, 08036 Catalonia, Spain [2] Institute for Research in Biomedicine (IRB), Barcelona, 08028 Catalonia, Spain. ; 1] Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK [2] Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK. ; Barcelona Centre for International Health Research (CRESIB, Hospital Clinic-Universitat de Barcelona), Barcelona, 08036 Catalonia, Spain. ; 1] Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA [2] Institute for Research in Biomedicine (IRB), Barcelona, 08028 Catalonia, Spain [3] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA (B.F.C.K.); Department of Molecular Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, State College, Pennsylvania 16802, USA (V.M.C., M.L.). ; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK. ; Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA. ; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK. ; 1] Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK [2] Wellcome Trust Sanger Centre for Human Genetics, Oxford OX3 7BN, UK. ; 1] Barcelona Centre for International Health Research (CRESIB, Hospital Clinic-Universitat de Barcelona), Barcelona, 08036 Catalonia, Spain [2] Institute for Research in Biomedicine (IRB), Barcelona, 08028 Catalonia, Spain [3] Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08010 Catalonia, Spain. ; 1] Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA [2] Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA [3] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA (B.F.C.K.); Department of Molecular Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, State College, Pennsylvania 16802, USA (V.M.C., M.L.).〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24572369" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA-Binding Proteins/deficiency/genetics/metabolism ; Female ; Gene Expression Regulation/*genetics ; Gene Silencing ; Genes, Protozoan/genetics ; Genome, Protozoan/genetics ; Germ Cells/cytology/*growth & development/metabolism ; Malaria/*parasitology ; Male ; Parasites/cytology/genetics/*physiology ; Plasmodium falciparum/cytology/*genetics/physiology ; Protozoan Proteins/genetics/metabolism ; Reproduction, Asexual ; Sex Differentiation/genetics ; Sexual Development/*genetics ; Transcription, Genetic/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...