ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2007-02-03
    Description: Seven-transmembrane receptor (7TMR) signaling is transduced by second messengers such as diacylglycerol (DAG) generated in response to the heterotrimeric guanine nucleotide-binding protein Gq and is terminated by receptor desensitization and degradation of the second messengers. We show that beta-arrestins coordinate both processes for the Gq-coupled M1 muscarinic receptor. beta-Arrestins physically interact with diacylglycerol kinases (DGKs), enzymes that degrade DAG. Moreover, beta-arrestins are essential for conversion of DAG to phosphatidic acid after agonist stimulation, and this activity requires recruitment of the beta-arrestin-DGK complex to activated 7TMRs. The dual function of beta-arrestins, limiting production of diacylglycerol (by receptor desensitization) while enhancing its rate of degradation, is analogous to their ability to recruit adenosine 3',5'-monophosphate phosphodiesterases to Gs-coupled beta2-adrenergic receptors. Thus, beta-arrestins can serve similar regulatory functions for disparate classes of 7TMRs through structurally dissimilar enzymes that degrade chemically distinct second messengers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nelson, Christopher D -- Perry, Stephen J -- Regier, Debra S -- Prescott, Stephen M -- Topham, Matthew K -- Lefkowitz, Robert J -- CA95463/CA/NCI NIH HHS/ -- HL16037/HL/NHLBI NIH HHS/ -- HL70631/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):663-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17272726" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestins/*metabolism ; COS Cells ; Carbachol/pharmacology ; Cell Line ; Cercopithecus aethiops ; Diacylglycerol Kinase/genetics/*metabolism ; Diglycerides/*metabolism ; Humans ; Mutation ; Phosphatidic Acids/metabolism ; Protein Binding ; RNA, Small Interfering ; Receptor, Muscarinic M1/*metabolism ; Recombinant Fusion Proteins/metabolism ; Second Messenger Systems ; *Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...