ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • RFLP  (1)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 88 (1994), S. 441-448 
    ISSN: 1432-2242
    Keywords: RFLP ; Mitochondrial DNA ; Cytoplasmic male sterility ; Pearl millet
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mitochondrial DNA (mtDNA) from 13 cytoplasmic male-sterile (cms) lines from diverse sources were characterized by Southern blot hybridization to pearl millet and maize mtDNA probes. Hybridization patterns of mtDNA digested with PstI, BamHI, SmaI or XhoI and probed with 13.6-, 10.9-, 9.7- or 4.7-kb pearl millet mtDNA clones revealed similarities among the cms lines 5141 A and ICMA 1 (classified as the S-A1 type of cytoplasm based on fertility restoration patterns), PMC 30A and ICMA 2. The remaining cms lines formed a distinct group, within which three subgroups were evident. Among the maize mitochondiral gene clones used, the coxI probe revealed two distinct groups of cytoplasms similar to the pearl millet mtDNA clones. The atp9 probe differentiated the cms line 81 A4, derived from P. glaucum subsp. monodii, while the coxII gene probe did not detect any polymorphism among the cms lines studied. MtDNA digested with BamHI, PstI or XhoI and hybridized to the atp6 probe revealed distinct differences among the cms lines. The maize atp6 gene clone identified four distinct cytoplasmic groups and four subgroups within a main group. The mtDNA fragments hybridized to the atp6 gene probe with differing intensities, suggesting the presence of more than one copy of the gene in different stoichiometries. Rearrangements involving the coxI and/or rrn18-rrn5 genes (mapped within the pearl millet clones) probably resulted in the S-A1 type of sterility. Rearrangements involving the atp6 gene (probably resulting in chimeric form) may be responsible for male sterility in other cms lines of pearl millet.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...