ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant ecology 83 (1989), S. 209-222 
    ISSN: 1573-5052
    Keywords: Kriging ; Pattern analysis ; Reliability ; Sampling theory
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Using spatial analysis methods such as spatial autocorrelation coefficients (Moran's I and Geary's c) and kriging, we compare the capacity of different sampling designs and sample sizes to detect the spatial structure of a sugar-maple (Acer saccharum L.) tree density data set gathered from a secondary growth forest of southwestern Québec. Three different types of subsampling designs (random, systematic and systematic-cluster) with small sample sizes (50 and 64 points), obtained from this larger data set (200 points), are evaluated. The sensitivity of the spatial methods in the detection and the reconstruction of spatial patterns following the application of the various subsampling designs is discussed. We find that the type of sampling design plays an important role in the capacity of autocorrelation coefficients to detect significant spatial autocorrelation, and in the ability to accurately reconstruct spatial patterns by kriging. Sampling designs that contain varying sampling steps, like random and systematic-cluster designs, seem more capable of detecting spatial structures than a systematic design.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Institute of Biological Sciences, 2005. This article is posted here by permission of American Institute of Biological Sciences for personal use, not for redistribution. The definitive version was published in BioScience 55 (2005): 501–510, doi:10.1641/0006-3568(2005)055[0501:CIEACM]2.0.CO;2.
    Description: Creative approaches at the interface of ecology, statistics, mathematics, informatics, and computational science are essential for improving our understanding of complex ecological systems. For example, new information technologies, including powerful computers, spatially embedded sensor networks, and Semantic Web tools, are emerging as potentially revolutionary tools for studying ecological phenomena. These technologies can play an important role in developing and testing detailed models that describe real-world systems at multiple scales. Key challenges include choosing the appropriate level of model complexity necessary for understanding biological patterns across space and time, and applying this understanding to solve problems in conservation biology and resource management. Meeting these challenges requires novel statistical and mathematical techniques for distinguishing among alternative ecological theories and hypotheses. Examples from a wide array of research areas in population biology and community ecology highlight the importance of fostering synergistic ties across disciplines for current and future research and application.
    Description: This paper is the result of a National Science Foundation (NSF) workshop on quantitative environmental and integrative biology (DEB-0092081). J. L. G. would like to acknowledge financial support from the NSF (DEB-0107555).
    Keywords: Ecological complexity ; Quantitative conservation biology ; Cyberinfrastructure ; Metadata ; Semantic Web
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 577104 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...