ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): B12310, doi:10.1029/2004JB003031.
    Description: Strike-slip faults in the forearc region of a subduction zone often present significant seismic hazard because of their proximity to population centers. We explore the interaction between thrust events on the subduction interface and strike-slip faults within the forearc region using three-dimensional models of static Coulomb stress change. Model results reveal that subduction earthquakes with slip vectors subparallel to the trench axis enhance the Coulomb stress on strike-slip faults adjacent to the trench but reduce the stress on faults farther back in the forearc region. In contrast, subduction events with slip vectors perpendicular to the trench axis enhance the Coulomb stress on strike-slip faults farther back in the forearc, while reducing the stress adjacent to the trench. A significant contribution to Coulomb stress increase on strike-slip faults in the back region of the forearc comes from “unclamping” of the fault, i.e., reduction in normal stress due to thrust motion on the subduction interface. We argue that although Coulomb stress changes from individual subduction earthquakes are ephemeral, their cumulative effects on the pattern of lithosphere deformation in the forearc region are significant. We use the Coulomb stress models to explain the contrasting deformation pattern between two adjacent segments of the Caribbean subduction zone. Subduction earthquakes with slip vectors nearly perpendicular to the Caribbean trench axis is dominant in the Hispaniola segment, where the strike-slip faults are more than 60 km inland from the trench. In contrast, subduction slip motion is nearly parallel to the Caribbean trench axis along the Puerto Rico segment, where the strike-slip fault is less than 15 km from the trench. This observed jump from a strike-slip fault close to the trench axis in the Puerto Rico segment to the inland faults in Hispaniola is explained by different distributions of Coulomb stress in the forearc region of the two segments, as a result of the change from the nearly trench parallel slip on the Puerto Rico subduction interface to the more perpendicular subduction slip beneath Hispaniola. The observations and modeling suggest that subduction-induced strike-slip seismic hazard to Puerto Rico may be smaller than previously assumed but the hazard to Hispaniola remains high.
    Description: J.L. was supported by the National Science Foundation through grant NSF-EAR0003888.
    Keywords: Stress interaction ; Subduction ; Strike-slip faults ; Forearc ; Puerto Rico ; Hispaniola
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Journal of Geophysical Research 116 (2011): B12318, doi:10.1029/2011JB008497.
    Description: We evaluate the long-term seismic activity of the North-American/Caribbean plate boundary from 500 years of historical earthquake damage reports. The 2010 Haiti earthquakes and other earthquakes were used to derive regional attenuation relationships between earthquake intensity, magnitude, and distance from the reported damage to the epicenter, for Hispaniola and for Puerto Rico and the Virgin Islands. The attenuation relationship for Hispaniola earthquakes and northern Lesser Antilles earthquakes is similar to that for California earthquakes, indicating a relatively rapid attenuation of damage intensity with distance. Intensities in Puerto Rico and the Virgin Islands decrease less rapidly with distance. We use the intensity-magnitude relationships to systematically search for the location and intensity magnitude MI which best fit all the reported damage for historical earthquakes. Many events occurred in the 20th-century along the plate-boundary segment from central Hispaniola to the NW tip of Puerto Rico, but earlier events from this segment were not identified. The remaining plate boundary to the east to Guadeloupe is probably not associated with M 〉 8 historical subduction-zone earthquakes. The May 2, 1787 earthquake, previously assigned an M 8–8.25, is probably only MI 6.9 and could be located north, west or SW of Puerto Rico. An MI 6.9 earthquake on July 11, 1785 was probably located north or east of the Virgin Islands. We located MI 〈 8 historical earthquakes on April 5, 1690, February 8, 1843, and October 8, 1974 in the northern Lesser Antilles within the arc. We speculate that the December 2, 1562 (MI 7.7) and May 7, 1842 (MI 7.6) earthquakes ruptured the Septentrional Fault in northern Hispaniola. If so, the recurrence interval on the central Septentrional Fault is ∼300 years, and only 170 years has elapsed since the last event. The recurrence interval of large earthquakes along the Hispaniola subduction segment is likely longer than the historical record. Intra-arc M ≥ 7.0 earthquakes may occur every 75–100 years in the 410-km-long segment between the Virgin Islands and Guadeloupe.
    Keywords: Lesser Antilles ; Puerto Rico ; Septentrional Fault ; Seismic hazard
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Marine Geology 254 (2008): 35-46, doi:10.1016/j.margeo.2008.05.001.
    Description: The October 11, 1918 ML 7.5 earthquake in the Mona Passage between Hispaniola and Puerto Rico generated a local tsunami that claimed approximately 100 lives along the western coast of Puerto Rico. The area affected by this tsunami is now significantly more populated. Newly acquired high-resolution bathymetry and seismic reflection lines in the Mona Passage show a fresh submarine landslide 15 km northwest of Rinćon in northwestern Puerto Rico and in the vicinity of the first published earthquake epicenter. The landslide area is approximately 76 km2 and probably displaced a total volume of 10 km3. The landslide's headscarp is at a water depth of 1200 m, with the debris flow extending to a water depth of 4200 m. Submarine telegraph cables were reported cut by a landslide in this area following the earthquake, further suggesting that the landslide was the result of the October 11, 1918 earthquake. On the other hand, the location of the previously suggested source of the 1918 tsunami, a normal fault along the east wall of Mona Rift, does not show recent seafloor rupture. Using the extended, weakly non-linear hydrodynamic equations implemented in the program COULWAVE, we modeled the tsunami as generated by a landslide with a duration of 325 s (corresponding to an average speed of ~ 27 m/s) and with the observed dimensions and location. Calculated marigrams show a leading depression wave followed by a maximum positive amplitude in agreement with the reported polarity, relative amplitudes, and arrival times. Our results suggest this newly-identified landslide, which was likely triggered by the 1918 earthquake, was the primary cause of the October 11, 1918 tsunami and not the earthquake itself. Results from this study should be useful to help discern poorly constrained tsunami sources in other case studies.
    Keywords: Tsunamis ; Mona Passage ; October 11, 1918 ; Puerto Rico ; Submarine landslide ; Tsunami modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 40 (2013): 4244-4248, doi:10.1002/grl.50830.
    Description: Active tectonic regions where plate boundaries transition from subduction to strike slip can take several forms, such as triple junctions, acute, and obtuse corners. Well‐documented slab tears that are associated with high rates of intermediate‐depth seismicity are considered here: Gibraltar arc, the southern and northern ends of the Lesser Antilles arc, and the northern end of Tonga trench. Seismicity at each of these locations occurs, at times, in the form of swarms or clusters, and various authors have proposed that each marks an active locus of tear propagation. The swarms and clusters start at the top of the slab below the asthenospheric wedge and extend 30–60 km vertically downward within the slab. We propose that these swarms and clusters are generated by fluid‐related embrittlement of mantle rocks. Focal mechanisms of these swarms generally fit the shear motion that is thought to be associated with the tearing process.
    Keywords: Slab tear ; Intermediate seismicity ; Subduction corner
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. Published in 2005 by the American Geophysical Union. The definitive version was published in Journal of Geophysical Research 110 (2005): B06404, doi:10.1029/2004JB003459.
    Description: The Puerto Rico trench exhibits great water depth, an extremely low gravity anomaly, and a tilted carbonate platform between (reconstructed) elevations of +1300 m and −4000 m. I argue that these features are manifestations of large vertical movements of a segment of the Puerto Rico trench, its forearc, and the island of Puerto Rico that took place 3.3 m.y. ago over a time period as short as 14–40 kyr. I explain these vertical movements by a sudden increase in the slab's descent angle that caused the trench to subside and the island to rise. The increased dip could have been caused by shearing or even by a complete tear of the descending North American slab, although the exact nature of this deformation is unknown. The rapid (14–40 kyr) and uniform tilt along a 250 km long section of the trench is compatible with scales of mantle flow and plate bending. The proposed shear zone or tear is inferred from seismic, morphological, and gravity observations to start at the trench at 64.5°W and trend southwestwardly toward eastern Puerto Rico. The tensile stresses necessary to deform or tear the slab could have been generated by increased curvature of the trench following a counterclockwise rotation of the upper plate and by the subduction of a large seamount.
    Keywords: Dynamic topography ; Slab tear ; Puerto Rico trench ; Caribbean plate ; Challenger Deep ; Seamount subduction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 3365513 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...